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EXECUTIVE SUMMARY

This report presents the results of a research project funded by the AAA 
Foundation for Traffic Safety. The primary aim of the study was to increase the under-
standing of the relative risks associated with particular driving behaviors. The results 
of the current study are intended to inform future studies, policies, and technologies 
directed at reducing driving behaviors that pose the most risk, thereby reducing crashes 
and their associated injuries and fatalities. 

Background

Many drivers choose to drive and behave in ways that increase their risk of 
crashing; for example: Elvik, Christensen, and Amundsen (2004) concluded that a re-
lationship exists between mean traffic speed and the number and severity of crashes 
that occur on a road. In fact, the authors suggest that speed is likely to be the single 
most important determinant in the frequency of traffic fatalities; they report that a 10% 
reduction in the mean speed of traffic is likely to reduce fatal traffic crashes by 34% and 
have a greater impact on traffic fatalities than a 10% reduction in traffic volume.

Safety-belt non-use has been associated with increased risk of injury and death 
in a crash. The National Highway Traffic Safety Administration (NHTSA) estimates 
that safety belts saved 195,382 lives between 1975 and 2004, including 15,434 lives 
in 2004 alone (NHTSA 2005b). Furthermore, according to NHTSA, more than half of 
passenger-vehicle occupants fatally injured in crashes in 2004 were unrestrained, and 
an estimated 5,839 of them would have survived if they had been wearing safety belts 
(NHTSA 2005b). Nevertheless, NHTSA estimates that nationwide roughly one in five 
drivers still does not use a safety belt (Glassbrenner 2004).
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Driving a vehicle is a psychomotor task, and continually monitoring the roadway 
and anticipating the actions of other drivers are critical for safely operating a motor ve-
hicle. A distracted or inattentive driver is likely to have delayed recognition or no recogni-
tion of information necessary for safe driving (Stutts et al. 2003). Driver distraction and 
inattention have been cited frequently as contributing factors in crashes; for example: 
the Indiana Tri-Level Study (Treat et al. 1979) and the Hendricks, Fell, and Freedman 
(1999) crash-causation study both found that driver inattention contributed to at least 
20% of the crashes studied. A more recent study suggests that visual inattention and 
engagement in secondary tasks contributed to nearly 60% of crashes (Klauer, Dingus, 
Neale, Sudweeks, and Ramsey 2006). Driver distraction and inattention is a contributing 
factor in 8% to 12% of tow-away crashes (Stutts, Reinfurt, and Rodgman 2001; Wang, 
Knipling, and Goodman 1996), and according to recent data from NHTSA’s Fatality 
Analysis Reporting System (FARS), a census of all fatal motor vehicle crashes occur-
ring on public roadways in the United States, police indicate that driver inattention is a 
contributing factor in roughly 10% of all fatal crashes annually. 

Drowsy driving is another risky behavior; drowsiness is a general term commonly 
used to describe the experience of being “sleepy,” “tired,” or “exhausted.” Drowsiness 
contributes to an estimated 76,000 to 100,000 crashes each year in the United States, 
resulting in an estimated 1,500 deaths and thousands of injuries (Knipling and Wang 
1995; Wang, Knipling and Goodman 1996). Most crash database statistics based on 
police-reported crashes suggest that 2% to 4% of vehicle crashes nationwide involve a 
drowsy driver. These statistics, however, likely underestimate the role of drowsiness in 
crashes because it is difficult to identify and because drivers are unlikely to admit they 
were drowsy after being involved in a crash. A recent in-depth naturalistic study found 
that drowsiness affected crashes in which the study sample was involved at much higher 
rates than would have been predicted based on existing databases. That study found 
drowsiness to be a contributing factor in 20% of all crashes and 16% of near-crashes 
in the study sample (Klauer, Dingus, Neale, Sudweeks, and Ramsey 2006).

Methods

The data used for the analyses in this report were collected during the 100-Car 
Naturalistic Driving Study, or the 100-Car Study (Dingus, Klauer, Neale, Petersen, Lee, 
Sudweeks et al. 2006). The 100-Car Study collected naturalistic, continuous, real-time 
data over a 12- to 13-month period from a sample of 109 primary drivers and 132 sec-
ondary drivers in the Northern Virginia/Washington, DC area. The dataset included five 
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channels of video and electronic data from sensors in the car to detect several driving 
behaviors (e.g., speeding, safety belt use, and so forth). Thus, the data acquisition 
system provided both video and quantitative kinematic data for analysis.

The driving performance data were used as post-hoc triggers to identify mo-
ments in the video where a crash, near-crash, or incident, as defined herein, had oc-
curred. Post-hoc triggers are values of a single driving performance variable (e.g., 0.6 
g lateral acceleration) or combinations of performance variables (e.g., speeds greater 
than 20 mph and forward range of 100 ft) used to identify moments when the driver 
may be involved in an unsafe situation. These triggers were used to flag specific video 
segments for more in-depth examination. Trained data reductionists reviewed the video 
and driving performance data surrounding these post-hoc triggers to determine whether 
a crash, near-crash, or incident had actually occurred. If so, they recorded a battery of 
variables for that driving epoch (typically 30 s), which included the sequence of events 
surrounding the crash, near-crash, or incident (collectively referred to hereafter as 
“events”); the driver behavior just prior to and during the event; environmental condi-
tions; and road and traffic-related conditions. After data reduction was complete, 82 
crashes, 761 near-crashes, and 8,295 incidents were identified (13 of the 82 crashes 
were excluded from analyses due to incomplete data; only the remaining 69 crashes 
with complete data are discussed hereafter). The operational definitions of each are 
as follows:

Crash: Any contact with an object, either moving or fixed, at any speed in which 
kinetic energy is measurably transferred or dissipated. This includes contact with 
other vehicles; roadside barriers; and objects on or off of the roadway, including 
pedestrians, cyclists, or animals. 

Near-Crash: Any circumstance requiring a rapid, evasive maneuver by the 
subject vehicle, or any other vehicle, pedestrian, cyclist, or animal to avoid a 
crash. A rapid, evasive maneuver is defined as a steering, braking, accelerating, 
or any combination of control inputs that approaches the limits of the vehicle’s 
capabilities. 

Incident: Any circumstance requiring a crash avoidance response by the subject 
vehicle, or any other vehicle, pedestrian, cyclist, or animal that is less severe 
than a rapid evasive maneuver (as defined previously), but more severe than a 
“normal” maneuver to avoid a crash. A crash-avoidance response can include 
braking, steering, accelerating, or any combination of control inputs. Incidents 
were judged to be highly irregular for the same driver.

•

•

•
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Also, 20,000 normal, uneventful driving segments or “epochs” (i.e., segments 
of driving performance data that did not contain triggered events) were reviewed and 
reduced to provide a baseline comparison to those driving behaviors observed just 
prior to crashes, near-crashes, and incidents.

Note that one powerful aspect of the 100-Car database is that detailed driving 
behavior data were collected just prior to crashes and near-crashes. This level of detail 
has never before been captured in either epidemiological databases or empirical stud-
ies. Twelve of the 69 crashes were police-reported; thus, 57 were not police-reported 
and would almost certainly not have been observed using these other methods. Data 
gathered from these types of crashes and near-crashes provide unique insight into the 
precipitating and potentially risky driving behaviors associated with these events. 

There were two phases of data analysis for this report. In Phase I, data collected 
in the original 100-Car Study were used to (a) assess the frequency of crashes, near-
crashes, and incidents in which drivers were engaging in particular driving behaviors; 
and (b) determine which data would be used for the modeling effort in Phase II.

For the Phase II analysis, logistic regression was used to compare and contrast 
the behaviors associated with crashes and near-crashes to the behaviors associated 
with “normal” driving, by computing odds ratios. Odds ratios, as applied in this study, 
estimate the relative risk of observing a given driver state or driving behavior in a crash 
or near-crash, relative to in an epoch, while controlling for all other driver states and 
driving behaviors included in the regression model. This analysis provides unique insight 
regarding which driving behaviors are riskier than others. 

Additionally, analyses in Phase II assessed whether differences existed between 
those drivers who were operationally defined as high- or low-risk drivers based on their 
observed rates of involvement in crashes, near-crashes, and incidents.

Conclusions

The results indicate that four driving states/behaviors are associated with an 
increased risk of being involved in a crash or near-crash. First, driving at inappropri-
ate speeds was associated with nearly tripling the odds of being involved in a crash 
or near-crash (OR = 2.9, 95% CI = 1.7 – 4.8) relative to driving at appropriate speeds. 
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Second, driving while drowsy was associated with a similar increase in the odds of 
being involved in a crash or near-crash, relative to driving while not drowsy (OR = 
2.9, 95% CI = 2.0 – 4.3). Third, when a driver’s eyes were off the forward roadway for 
greater than 2 s, the odds of a crash or near-crash occurring were nearly double those 
when the driver was paying attention to the forward roadway (OR = 1.9, 95% CI = 1.4 
– 2.5). Finally, the odds of a crash or near-crash more than doubled when a driver was 
exhibiting aggressive driving behaviors (OR = 2.1, 95% CI = 1.3 – 3.4). 

When comparing high-risk drivers (defined as 12.5% of the study sample with 
the highest rate of crashes, near-crashes, and incidents per mile driven) to low-risk 
drivers (defined as the 12.5% of the study sample with the lowest rate of crashes, 
near-crashes, and incidents), the high-risk drivers were less likely to wear a safety belt 
and more likely to drive while drowsy than the low-risk drivers. In addition, the high-risk 
drivers’ average rate of crashes, near-crashes, and incidents (219.5 per 10,000 miles 
driven) was more than 100 times that of the low-risk drivers (2.1 crashes per 10,000 
miles driven). 

In summary, driving faster than surrounding traffic, driving while drowsy, looking 
away from the forward roadway for longer than 2 s, and aggressive driving are associated 
with increased risk of being involved in crashes and near-crashes. Note that Dingus, 
Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006) showed that near-crashes were 
kinematically similar to crashes (i.e., involved comparable levels of braking and swerv-
ing). The primary difference between a crash and a near-crash is a successful evasive 
maneuver. Thus, crashes lead to property damage, injury, and possibly death, but near-
crashes do not, even though they have similar properties. Including both near-crash 
and crash events in the calculation of odds ratios greatly improves statistical precision 
of the estimates, and appears to be a promising technique for use in future research. 

These results can be used to educate the public on the dangers of looking away 
from the forward roadway, driving while drowsy, driving faster than surrounding traffic, 
and driving aggressively. They also have implications for collision avoidance warning 
systems; for example: a collision warning or collision avoidance system that can deter-
mine whether the driver’s eyes are closed or directed away from the forward roadway 
could potentially be more efficient and accurate. In general, this research highlights 
driving behaviors that produce the greatest driving risk, which, if avoided, could greatly 
reduce near-crash and crash events.
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INTRODUCTION

This report presents the results of a two-phased project funded by the 
AAA Foundation for Traffic Safety. The data used for the analyses in this report were 
collected during the 100-Car Naturalistic Driving Study, or the 100-Car Study, (Dingus, 
Klauer, Neale, Petersen, Lee, Sudweeks et al. 2006), conducted by the Virginia Tech 
Transportation Institute (VTTI), under sponsorship from the National Highway Traffic 
Safety Administration (NHTSA), Virginia Department of Transportation (VDOT), and 
Virginia Tech. The primary aim of the current study was to increase the understanding 
of the relationship between potentially unsafe driving behaviors as well as crashes, 
near-crashes, and incidents (collectively referred to hereafter as “events”). The results 
of this study are intended to inform future studies, policies, and technologies directed 
at reducing driving behaviors found to be associated with increased risk of involve-
ment in a crash or near-crash, thereby reducing crashes and their associated injuries 
and fatalities. The results in the current study, for example: could initiate new traffic 
enforcement policies, educate drivers about the relationship between their personal 
driving habits and the risk associated with those habits, and indicate potential uses of 
countermeasure technologies (e.g., lane-departure and rear-end crash avoidance). 

Background and Significance

Unintentional injury is responsible for more years of potential life lost before the 
age of 65 than cancer and heart disease combined (National Center for Health Statistics 
2004). Motor vehicle crashes are the single largest cause of unintentional injury for ages 
1 to 65, accounting for a total of 42,643 deaths in 2003 when motor vehicle fatalities 
killed 14.66 out of every 100,000 Americans (NHTSA 2005). Societal costs associated 
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with these crashes include lost wages, medical expenses, insurance claims, production 
delays, property damage, and indirect costs (National Safety Council 1995). In 2000, 
the total economic cost of traffic fatalities was approximately $230.6 billion, including 
$61 billion in lost productivity, $59 billion in property damage, and $32.6 billion in travel 
delays (Blincoe et al. 2002). 

One of the most significant studies on the factors contributing to motor vehicle 
crashes was the Indiana Tri-Level Study (Treat et al. 1979). Using epidemiological 
methods, this study investigated how frequently various factors contributed to traffic 
crashes. Researchers assessed causal factors as definite, probable, or possible. The 
study determined the following:

90.3%1 of crashes involved human error, such as risky driving behavior, inad-
vertent errors, and impaired states.

34.9% of crashes involved environmental factors, such as wet or slick road 
conditions and poor weather.

9.1% of crashes involved vehicle factors, such as brake failure and worn tires.

The two most frequent human behaviors found in all the crashes investigated 
at the three different levels were driver inattention/distraction (20.3% of the crashes) 
and speeding (14.7% of the crashes). 

A more recent study by Hendricks, Fell, and Freedman (1999) tried to replicate 
the epidemiological method employed in the Indiana Tri-Level Study. More specifically, 
the researchers assessed the specific driver behaviors and unsafe driving acts that led 
to crashes, and the situational, driver, and vehicle characteristics associated with these 
behaviors. Similar to the Indiana Tri-Level Study, Hendricks, Fell, and Freedman found 
human error was the most frequently cited contributing factor in these crashes (99.2%), 
followed by environmental (5.4%) and vehicle factors (0.5%). Thus, crashes and their 
associated injuries and fatalities are related to unsafe driving behaviors.

Dingus, Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006) recently completed 
the 100-Car Naturalistic Driving Study, the primary purpose of which was to assess 

•

•

•

1 Note the percentages above do not total to 100% because some events were coded as involving more than 
 a single factor.
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crash causation. Continuous driving data were collected from 109 primary drivers 
and 132 secondary drivers in the Northern Virginia/Washington, DC, area over 12 to 
13 months. The data included five channels of video, including the driver’s face and 
over-the-shoulder views, and many sensors measuring various driving performance 
variables, such as longitudinal deceleration, vehicle speed, distance to lead vehicle, 
and Global Positioning System (GPS) coordinates. Using the driving performance and 
video data, trained data reductionists identified 82 crashes, 761 near-crashes, and 
8,295 incidents, and recorded driving behaviors occurring just prior to these events. 
(Note that 13 of the 82 crashes were excluded from analyses due to incomplete data; 
only the remaining 69 crashes with complete data are discussed hereafter.) Results 
from this study indicated driver drowsiness and engaging in secondary tasks were fre-
quent contributors to crashes, near-crashes, and incidents and were shown to increase 
crash risk. While various potentially risky driving behaviors were recorded in the original 
100-Car Study, no in-depth analyses of these behaviors have been conducted to date. 
The study reported here used data from the 100-Car Study to assess the relationship 
between these behaviors and the risk of occurrence of crashes and near-crashes. 

Driving Behaviors 

Motor vehicle crashes and their associated injuries and fatalities are often associ-
ated with potentially risky or unsafe driving behaviors. Yet many drivers choose to drive 
and behave in ways that increase their risk of crash involvement and serious injury. 

Excessive speed

The estimated annual savings of 2,000 to 4,000 lives as a result of implement-
ing the National Maximum Speed Limit of 55 mph in 1974 (Waller 1987) illustrates the 
dramatic risk associated with vehicle speed. When the National Maximum Speed Limit 
was later raised to 65 mph on rural interstate highways in 1987, vehicle crashes showed 
a marked increase (Evans 1991). A recent analysis of repealing the National Maximum 
Speed Limit in late 1995 found that 23 states had raised their rural interstate speed 
limits to 70 or 75 mph in December 1995 or during 1996. The researchers analyzed 
fatality rates on rural interstates from 1992 through 1999 in states that either did not 
change their rural interstate speed limits, raised the speed limits to 70 mph, or raised 
their speed limits to 75 mph; and found that fatality rates in both groups of states that 
had raised their speed limits were higher than expected based on fatality rates in states 
that did not change their speed limits (Patterson, Frith, Povey, and Keall 2002). 
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Similarly, Elvik, Christensen, and Amundsen (2004) conducted a rigorous meta-
analysis that included 97 different studies totaling 460 estimates of the relationship 
between changes in speed and changes in the frequency of crashes or associated 
injuries and fatalities. The study concluded that a relationship exists between mean 
speed and the number and severity of crashes on a road. Furthermore, the authors 
suggest that speed is likely to be the single most important determinant in the frequency 
of traffic fatalities; they report that a 10% reduction in the mean speed of traffic is likely 
to reduce fatal traffic crashes by 34% and have a greater impact on traffic fatalities than 
a 10% reduction in traffic volume.

While increases in posted speed limits increase crash risk and severity, research 
also suggests that speeding decreases time to respond to an event and increases speed 
differential at the time of impact. As cited by NHTSA in Traffic Safety Facts 2004: “Speed-
ing reduces a driver’s ability to steer safely around curves or objects in the roadway, 
extends the distance necessary to stop a vehicle, and increases the distance a vehicle 
travels while the driver reacts to a dangerous situation” (NHTSA 2005c). Furthermore, 
impact force during a vehicle crash varies with the square of the vehicle speed, so 
even small increases in speed have large and potentially lethal effects on the force at 
impact (Road and Traffic Authority 2005). 

Safety belt use

NHTSA estimates that safety belts saved 195,382 lives between 1975 and 
2004, including 15,434 lives in 2004 alone (NHTSA 2005b). Furthermore, according 
to NHTSA, more than half of passenger-vehicle occupants fatally injured in crashes in 
2004 were unrestrained, and an estimated 5,839 would have survived if they had been 
wearing safety belts (NHTSA 2005b). Nevertheless, nationwide, an estimated one in 
five front-seat occupants still do not wear safety belts (Glassbrenner 2004).

Driver distraction/inattention

Driver distraction/inattention was the most frequently citied contributing factor in 
the Indiana Tri-Level Study (20.3% of the crashes) and the Hendricks, Fell, and Freed-
man crash-causation study (23% of the crashes). A more recent study suggested that 
visual inattention and engaging in secondary tasks contributed to nearly 60% of crashes 
observed in the study (Klauer, Dingus, Neale, Sudweeks, and Ramsey 2006). Driving a 
vehicle is a psychomotor task, and continually monitoring the roadway and anticipating 
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the actions of other drivers are critical for operating a motor vehicle safely. A distracted 
or inattentive driver is likely to have delayed recognition or no recognition of information 
necessary for safe driving (Stutts et al. 2003). Driver distraction/inattention was esti-
mated to be a contributing factor in 8% to 12% of tow-away crashes (Stutts, Reinfurt, 
and Rodgman 2001; Wang, Knipling, and Goodman 1996). According to recent data 
from NHTSA’s Fatality Analysis Reporting System (FARS), a census of all fatal motor 
vehicle crashes occurring on public roadways in the United States, police indicate driver 
inattention as a contributing factor in roughly 10% of all fatal crashes annually. 

 

Driver drowsiness

Drowsiness is a general term commonly used to describe the experience of being 
“sleepy,” “tired,” or “exhausted.” Drowsiness is both a physiological and a psychologi-
cal experience (Institute for Road Safety Research 2004). Drowsiness affects physi-
cal and mental alertness, decreasing an individual’s ability to safely operate a vehicle 
and increasing the risk of human error that could lead to crashes. As with drugs and 
alcohol, drowsiness slows reaction time, decreases awareness, and impairs judgment 
(Lyznicki et al. 1998; Leger 1995). Drowsy driving is a key factor in an estimated 76,000 
to 100,000 crashes occurring each year in the United States, resulting in 1,500 deaths 
and thousands of injuries (Knipling and Wang 1995; Wang, Knipling, and Goodman 
1996). Most crash database statistics indicate 2% to 4% of vehicle crashes involve a 
drowsy driver. These statistics, however, likely underestimate the role of drowsiness 
in crashes, because it is difficult to identify and because drivers are unlikely to admit 
they were drowsy while driving. The 100-Car Study found that drowsiness affected 
crashes at much higher rates than recorded in existing crash databases. Drowsiness 
was found to be a contributing factor in 20% of all crashes and 16% of near-crashes 
that were documented in the 100-Car Study (Klauer, Dingus, Neale, Sudweeks and 
Ramsey 2006).

Interrelationships of Driving Behaviors

NHTSA’s annual Traffic Safety Facts publications present statistics illustrating 
associations between several specific risky behaviors. Speeding and alcohol impairment, 
for example, have been shown to be associated: 40% of drivers with illegal blood alcohol 
concentrations who were involved in fatal crashes were also speeding, as compared to 
only 15% of drivers with blood alcohol concentrations of 0.00 (2005c). Speeding and 
lack of safety belt use also appear to be associated with one another. Fewer than half 
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(44%) of all drivers 21 and older who were involved in speeding-related fatal crashes 
were wearing safety belts, as compared to 72% of non-speeding drivers 21 and older 
who were involved in fatal crashes (NHTSA 2005c). 

One line of research suggests that people who engage in one potentially unsafe 
driving behavior are also likely to engage in several others (e.g., Ludwig and Geller 
1997). In a monograph describing more than 15 years of research with pizza delivery 
drivers, Ludwig and Geller (2000) found that drivers who learned to perform one safe 
driving behavior were likely to perform several others. Ludwig and Geller (1991), for 
example, used a combination of education and awareness meetings, prompts, and 
commitment cards to significantly increase safety belt use among pizza delivery driv-
ers. They also observed significant increases in turn-signal use (a behavior not directly 
targeted by the intervention) compared to a control group that did not receive any of 
the intervention materials. Similarly, in the same setting, an intervention using goal 
setting and feedback techniques to increase full stops at intersections was found to be 
effective, and also significantly increased both turn signal and safety belt use (Ludwig 
and Geller 1997; 1999). 

Since many observed driving behaviors were correlated, the authors speculated 
that they fall under the same response class, which is a constellation of behaviors that 
produce the same consequence (e.g., driving attentively and following at a safe dis-
tance result in “safe” operation of a motor vehicle). Behaviors that share some type of 
functional attribute, such as safety-related driving behaviors, are more likely to be cor-
related than unrelated combinations of behaviors, such as typing and traveling above 
the posted speed limit. Driving behaviors, for example, are typically shaped through 
similar processes and are, therefore, likely to operate under similar contingencies or 
rules in the environment (Ludwig and Geller 2000). Most people learn to drive a vehicle 
though a similar process, such as parental instruction or driver education and train-
ing programs. As these driving behaviors operate under the same contingencies and 
environmental rules, such as traffic enforcement polices, behaviors that correlate are 
more likely to generalize than novel combinations of behaviors (Ludwig 2001). 

If safe driving practices correlate in a consistent fashion, then intervening to 
increase one desired safe driving behavior may have indirect effects on others within 
the same response class. This behavioral correlation can result in changes in other 
safety-related behaviors besides the behavior targeted by the intervention. Thus, safety-
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related driving behaviors may be conceived not as individual responses, but as groups 
of functionally related behaviors (e.g., the response class of safe driving practices). 
This is called “response generalization” (Carr 1988). Response generalization occurs 
when multiple behaviors clustered in a functional response class, such as safety-related 
behaviors, increase as a result of intervention aimed at one of the behaviors within that 
response class (Russo, Cataldo, and Cushing 1981). Unfortunately, a rather narrow 
and piecemeal approach is taken in intervention research when assessing intervention 
effectiveness. In other words, most scientists have intervened upon, measured, and 
reported their findings on a single target response, without considering that a variety of 
responses may correlate as a function of similar response classes and reinforcement 
histories (Geller 2001; Ludwig and Geller 1991, 1997, 2001). 

Limitations of Prior Research

Knowledge of how risky driving behaviors relate to crashes is limited. First, the 
populations studied have not always been representative of the driving population; for 
example: while pizza delivery drivers are typically drivers aged 16 to 24, and young 
drivers clearly need intervention, pizza drivers operate under external contingencies, 
such as being paid per delivery, a factor not present in the population at large. 

Second, the data collected in most studies used spot checks, which only repre-
sent a small fraction of the participants’ on-road driving behavior, making it more difficult 
to generalize these findings to the broader driving population. 

Third, most of the data from national crash statistics are obtained from police 
accident reports. While these reports provide general insight into a crash, they have 
limitations: (1) witnesses and crash participants can be biased and report conflicting 
stories; (2) police officers, while sometimes experienced, generally do not receive ex-
tensive training in crash reconstruction; and (3) witnesses or those who were severely 
injured in a crash are unlikely to be able to effectively persuade the police officer with 
their opinions of the crash. 

Finally, the few studies that have examined the relationship of multiple risky 
behaviors have done so under one or more of these limitations. A naturalistic study 
approach, in which many drivers are studied over an extended period of time, provides 
considerable advantages. 
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Advantages of the Naturalistic Approach

Naturalistic driving studies involve the real-world collection of driving data over 
protracted portions of time, such as 1 year, using sophisticated but unobtrusive data 
collection systems, without an on-board experimenter. This type of data collection 
enables detailed driving behavior to be recorded while drivers are commuting to work, 
running errands, or driving in other common scenarios. Most importantly, the drivers 
are under no experimenter-induced time restrictions and are dealing with daily traffic 
conditions as well as all the pressures associated with real-world driving. These data 
are then reviewed and reduced into a rich database that can be mined for multiple 
research purposes.

The 100-Car Study collected naturalistic, continuous, real-time data over a 12- to 
13-month period from a sample of 109 primary drivers in the Northern Virginia/Wash-
ington, DC area. An on-board apparatus captured five channels of video and electronic 
data from sensors that detected a variety of driving behaviors, such as speeding and 
safety belt use. Thus, the data provided both video and quantitative data for analysis. 
Note that the original 100-Car Study captured data from an additional 132 secondary 
drivers who also operated the 109 study vehicles at some point during the study period. 
Data collected from all drivers were analyzed in the first phase of the current study; 
however, only data from primary drivers were used in the second phase.

The driving performance data were used as post-hoc triggers to identify mo-
ments in the video where an event occurred. Trained data reductionists reviewed the 
video and driving performance data surrounding these post-hoc triggers to determine 
whether the event was valid, and if so, recorded a battery of variables. These variables 
included the sequence of events surrounding the crash, near-crash, or incident; the 
driver behavior just prior to and during the event; and environmental-, road-, and traffic-
related conditions. After data reduction was complete, 69 crashes, 761 near crashes, 
and 8,295 incidents were identified. The operational definitions of each type of event 
were as follows:

Crash: Any contact with an object, either moving or fixed, at any speed in which 
kinetic energy is transferred or dissipated. Includes other vehicles, roadside 
barriers, and objects on or off of the roadway, including pedestrians, cyclists, 
or animals. 

•
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Near-Crash: Any circumstance requiring a rapid, evasive maneuver by the 
subject vehicle, or any other vehicle, pedestrian, cyclist, or animal to avoid a 
crash. A rapid, evasive maneuver is defined as a steering, braking, accelerating, 
or any combination of control inputs that approaches the limits of the vehicle’s 
capabilities. 

Incident: Any circumstance requiring a crash avoidance response by the subject 
vehicle, or any other vehicle, pedestrian, cyclist, or animal that is less severe 
than a rapid evasive maneuver (as defined previously), but more severe than a 
“normal” maneuver to avoid a crash. A crash-avoidance response can include 
braking, steering, accelerating, or any combination of control inputs. Incidents 
were judged to be highly irregular for the same driver.

Also, 20,000 normal, uneventful driving segments or “epochs” were reviewed 
and reduced to provide a baseline for comparison to the driving behavior observed in 
association to the events.

One powerful aspect of the 100-Car database is that data were collected on 
crashes that have never before been captured in either epidemiological databases or 
empirical studies. Only 12 of the 69 crashes were police-reported; 57 were not. These 
types of crashes provide unique insight into the following analyses of risky driving be-
haviors. Using crash database statistics, researchers hypothesized prior to the 100-Car 
Study that data would be collected on approximately 12 to 14 police-reported crashes 
and perhaps 24 total crashes. The 100-Car Study database contained roughly five 
times as many non-police-reported crashes as had been expected. 

The primary advantage to the naturalistic approach is the video and dynamic 
sensor data that allows experimenters to review all pre-event and event parameters, 
such as distraction, drowsiness, and error. This detailed and accurate information re-
garding the driver’s behavior leading up to and during a crash, near-crash, or incident is 
severely limited or utterly absent using other data collection approaches. The naturalistic 
approach also permits the accurate calculation of parameters such as vehicle speed, 
vehicle headway, time-to-collision (TTC), and driver reaction time. These variables are 
all included in an event database similar to an epidemiological crash database, but 
with video, driver, and vehicle data appended. The video and electronic data can be 
replayed at varying frame rates in order to fully understand the nature of each event. 
Additionally, unlike an epidemiological crash database, this database also provides data 
pertaining to the behavior and performance of drivers during ordinary driving.

•

•
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The data collection approach used in the 100-Car Study provides a unique tool 
that augments other data collection methods, such as epidemiological and empirical 
data collection. Traditional epidemiological or empirical methods lack sufficient detail 
for studying the relationship between driving behaviors and crashes and do not always 
capture the complexities of the driving environment or of natural driving behavior. Thus, 
naturalistic driving data collection, such as in the 100-Car Study, provides sufficient 
detail to examine the relationship between human behavior and crashes, near-crashes, 
and incidents (Dingus, Klauer, Neale, Petersen, Lee, Sudweeks et al. 2006).

Precise analysis of the events leading up to a crash, near-crash, or incident is 
possible with the 100-Car Study dataset since both video and electronic sensor data are 
available for all such events. The study of near-crashes has two important advantages 
over the study of crashes alone: (1) near-crashes occur much more frequently than 
crashes, and thus increase the sample size of events from which useful information 
can be collected, and (2) every near-crash involves a driver performing a success-
ful evasive maneuver. Capturing data on near-crashes will likely provide additional 
insight into effective defensive driving techniques and potential countermeasures for 
these driving situations. Assessment of successful avoidance maneuvers for differ-
ent near-crash scenarios, for example, could initiate driver training course material 
on appropriate responses for a driver encountering these situations as well as crash 
countermeasure technologies. Furthermore, the absence of an on-board experimenter 
greatly reduces the likelihood of the driver artificially conforming his or her behaviors to 
perceived expectations. Dingus, Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006) 
reported evidence suggesting that drivers tended to drive more carefully during the first 
few hours of the 100-Car Study, but that they quickly adapted to the presence of the 
in-vehicle instrumentation and resumed normal driving behavior. 



23

METHODS

This section provides a brief summary of that data collection effort, followed 
by a description of additional methods specific to the current analyses.

There were two phases of data analysis for this report. In Phase I, data from the 
original 100-Car Study were used to assess (1) the frequency of crashes, near-crashes, 
and incidents where all 241 drivers were engaging in potentially risky driving behaviors; 
and (2) whether a subset of events (e.g., only crashes, or crashes and near-crashes) 
or all events (i.e., crashes, near-crashes, and incidents) would be used for the model-
ing effort in Phase II. 

Logistic regression was used for Phase II analyses to compute odds ratios to 
estimate the relative risk of involvement in a crash or near-crash, associated with specific 
driving behaviors. Additionally, Phase II analyses assessed the impact of demographic 
variables (such as age and gender) on crash risk, and also assessed whether differ-
ences existed between those drivers that were operationally defined as high- or low-risk 
drivers. In Phase II, only data from the primary drivers were analyzed.

Participants and Setting

One hundred participants who commute to and from the Washington, DC met-
ropolitan area were recruited as drivers in the 100-Car Study (Dingus, Klauer, Neale, 
Petersen, Lee, Sudweeks et al. 2006). As the study progressed, some participants had 
to be replaced for various reasons (e.g., moved from the area), so the final number of 
participants was 109. Driver age and annual mileage were used as screening criteria 
to select the subject population. As explained in Dingus, Klauer, Neale, Petersen, Lee, 
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Sudweeks et al. (2006), one of the primary goals of the original 100-Car Study was 
to examine factors associated with rear-end crashes. Thus drivers aged 18 to 25 and 
male drivers were recruited heavily, because such drivers are over-represented in 
rear-end collisions (Knipling, Wang, and Yin 1993). Additionally, higher-mileage drivers 
were sought to increase the expected number of crashes, near-crashes, and incidents 
observed during the study. The annual mileage criteria, however, were only used for 
part of the subject-recruiting process, as identifying high-mileage drivers became in-
creasingly difficult. The number of miles driven during the 100-Car Study is shown in 
Table 1. Table 2 displays the age and gender distribution of participants.

Table 1. Miles driven during the 100-Car Study.

Actual Miles Driven Number of Drivers Percentage of Drivers

0–9,000 29 26.6%

9,001–12,000 22 20.2%

12,001–15,000 26 23.9%

15,001–18,000 11 10.1%

18,001–21,000 8  7.3%

More than 21,000 13 11.9%

Table 2. Participant age and gender distributions for the 100-Car Study.

Age
Gender  

(N and % of Total) Total
Female Male

18-20 
9 7 16

8.3% 6.4% 14.7%

21-24
11 10 21

10.1% 9.2% 19.3%

25-34
7 12 19

6.4% 11.0% 17.4%

35-44
4 16 20

3.7% 14.7% 18.4%

45-54 
7 13 20

6.4% 11.9% 18.3%

55+
5 8 13

4.6% 7.3% 11.9%
Total N 43 66 109

Total Percentage 39.4% 60.6% 100.0%

Note that the oldest participant was 68 years old.
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Note that driver demographic data and questionnaire data were only collected 
on the 109 primary drivers, but not any of the secondary drivers. Also note that the 
sample of drivers in these analyses included a mix of drivers between the ages of 18 
and 68, but did not include any younger “novice drivers” or older “senior drivers.” 

Light Vehicle Types

The data collected in the 100-Car Study came from six vehicle models, including 
Toyota Camry (1997-2001), Toyota Corolla (1993-2002), Ford Explorer (1995-2000), 
Ford Taurus (2000-2002), Chevrolet Malibu (2002), and Chevrolet Cavalier (2002). Six 
vehicle models were selected a priori to reduce the number of custom bracket types 
required to instrument the vehicles without causing permanent damage. Figures 1 and 
2 show examples of the vehicles used in the 100-Car Study.

Figure 1. Toyota Camry and Toyota Corolla used in 100-Car Study.

Figure 2. Ford Explorer and Ford Taurus used in 100-Car Study.

A total of 22 Chevrolet vehicles (12 Malibus and 10 Cavaliers) were leased from 
the Virginia Tech Motor Pool and instrumented with data collection equipment. These 
leased vehicles were used to help recruit younger drivers because finding younger driv-
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ers who actually drove one of the six vehicle models was difficult. Twenty-two younger 
participants were given leased vehicles to drive for 1 year. These drivers received free 
use of the vehicle, including standard maintenance, and a bonus at the end of the 
study. The additional 78 vehicles (comprised of the aforementioned Toyota, Ford, or 
GM models) were the participants’ personal vehicles and instrumented with the same 
type of data collection systems as the leased vehicles. For allowing their vehicles to 
be instrumented, these participants received $125.00 per month and the same bonus 
as the leased-vehicle participants at the end of the study. 

Data Collection in the 100-Car Study

The 100-Car Study instrumentation package was engineered by VTTI to be rug-
ged, durable, expandable, and unobtrusive. The system consisted of a Pentium-based 
computer that received and stored data from a network of sensors distributed around 
the vehicle. Several weeks of data could be stored on the system’s hard drive before 
space limitations made retrieving the data necessary.

Each sensing subsystem within a vehicle was independent, so any failures 
were constrained to a single sensor type. Sensors included a box to obtain data from 
the vehicle network, an accelerometer box for longitudinal and lateral acceleration, 
a system to provide information on distance to lead and following vehicles, a system 
to detect conflicts with vehicles to either side of the subject vehicle, an incident box 
to allow drivers to flag incidents for the research team, a video-based lane-tracking 
system to measure lane-keeping behavior, and video to validate any sensor-based 
findings. The video subsystem provided a continuous window into the happenings in 
and around the vehicle. Five camera views monitored the driver’s face and driver’s 
side view of the road, the forward road view, the rear road view, the passenger-side 
road view, and the over-the-shoulder view of the driver’s hands and surrounding areas. 
The video system was digital, with software-controllable video compression capability, 
allowing synchronization, simultaneous display, and efficient archival and retrieval of 
100-Car Study data. 

Other capabilities of the 100-Car Study’s Data Acquisition System (DAS) provided 
the research team with additional information. These capabilities included automatic 
notification to inform the research team of possible collisions, cellular communications 
to determine system status and vehicle position, initialization equipment to automatically 
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control system status, and a GPS subsystem to collect information on vehicle position. 
This subsystem was one of 10 used in conjunction with the cellular communication 
subsystems to track and locate vehicles for repair and data downloading.

The main DAS unit (Figure 3) was mounted under the package shelf (Figure 4). 
Doppler radar antennas were mounted behind specially acquired plastic license plates 
on the front and rear of the vehicle (Figure 5). Table 3 shows a list of all the network 
and VTTI sensor variables that the DAS recorded. 

Figure 3.  Figure 4.
The 100-Car DAS main unit  The main DAS unit mounted under the trunk
shown without the top cover. “package shelf.”

Figure 5. Doppler radar antenna mounted on the 
front of a vehicle, covered by a plastic license plate.
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Table 3. Network and VTTI sensor variables recorded by the DAS.

Sensor Subsystem Description

Lateral acceleration Records the rate of acceleration as vehicle moves to the left or 
right (measure in g-force).

Longitudinal acceleration Records the rate of acceleration/deceleration as the driver applies 
the accelerator/brake (measured in g-force).

Yaw rate Records the rate of side movement (measured in deg/s).

Forward radar Records the distance and TTC to vehicles in front of the 
instrumented vehicle. Used to calculate forward range (ft), range-
rate (ft/s), TTC (s).

Rear radar Records the distance and TTC to vehicles behind the instrumented 
vehicle. Used to calculate forward range (ft), range-rate (ft/s), TTC (s).

Side radar range Records the presence of a vehicle beside the instrumented vehicle 
as well as closing speed of a vehicle in adjacent lane.

Lane position Records the vehicle position between the two lane markings on 
the roadway using digital imaging techniques (measured in inches 
from center of lane).

Radio Frequency sensor Records the presence of an RF signal that is transmitted when a 
cell phone is in use.

GPS antenna Records the vehicle’s latitude, longitude, elevation, as well as 
horizontal and vertical speed.

In-vehicle network Records the vehicle speed (mph), brake activation (on/off), 
accelerator pressure (% depression), and turn-signal use (left, 
right, hazards, off). 

Incident pushbutton Manual sensor initiated when the driver presses a button. The 
computer will record an audio message from the driver as well as 
insert a flag in the data stream.

Other major components were mounted above and in front of the center rearview 
mirror (Figure 6), including an incident pushbutton box containing a button a participant 
could press whenever an unusual driving event occurred; an unobtrusive miniature 
camera for the driver face view, which was mounted behind a smoked plexiglass cover 
and, therefore, invisible to the driver; and a forward-view camera and glare sensor, 
which were mounted behind the rearview mirror (Figure 7) so as not to occlude the 
driver’s normal field of view.
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Figure 6. The incident pushbutton box mounted above the rearview mirror. 
The right-hand portion contains the driver-face/left-road view camera hidden 
behind a smoked plexiglas cover.

Figure 7. The mounting for the glare sensor behind the rearview mirror. The 
forward-view camera was part of the same mounting assembly.

Video Camera Systems

As shown in Figure 8, five video cameras were used in the video recording 
system: (1) a forward-looking camera that captured the forward roadway scene, traffic 
situation, and possible incidents; (2) a driver’s face camera that recorded facial expres-
sions, eyelid closure, glance position, and head turns; (3) a right-side camera, mounted 
on the A-pillar of the passenger side to capture the rear-passenger side; (4) a dome 
camera mounted from inside the vehicle that captured data over the driver’s shoulder 
toward the steering wheel, hands, and feet; and (5) a rear camera, mounted near the 
center-high-mounted stop lamp, that captured the situation behind the vehicle. Infrared 
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(IR) lighting illuminated the vehicle cab so the driver’s face and hands could be viewed 
by the camera during nighttime driving, without creating glare or distracting the driver 
(i.e., infrared light is not detectable to the human visual system). 

Figure 8. The five camera views recorded in the instrumented vehicle (top view).

The video camera arrangement shown in Figure 8 captured several important 
piecesThe video camera arrangement shown in Figure 8 captured several important 
pieces of data: incidents around the vehicle as they developed; the driver’s facial ex-
pression, approximate glance direction, and approximate level of eye closure; and the 
pertinent visual scene, whether moving forward or backward. The five camera images 
were multiplexed into a single image as shown in Figures 9 and 10. Note that the right-
side camera and the rear camera were presented in the lower right quadrant in a split 
arrangement. 
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Figure 9. Diagram of the multiplexed camera views.

Driver Face and Left-Side View
Forward View

(68º Horizontal)

Over-the-Shoulder View
(Pinhole, 70º Diagonal)

Right-Side View
(55º Horizontal)

Rear View
(68º Horizontal)

Figure 10. A compressed video image from the 100-Car data. The driver’s 
face (upper left quadrant) is distorted to protect the driver’s identity. The lower 
right quadrant is split with the left-side (top) and the rear (bottom) views.

Digital video recording was tied to the booting/powering system and began to 
operate 2 min after the ignition was on. The video then continuously recorded, thereby 
allowing laboratory review and selection of scenes with minimal losses. The video time-
stamp was used to access the corresponding digital driving performance data and plot 
in a synchronized manner. Data reductionists were able to access and observe both 
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the video and associated driving performance data simultaneously, such as lateral ac-
celeration and vehicle speed, which greatly assisted their ability to assess and record 
driving behaviors.

Data Collection and Storage

To collect the data from the experimental vehicles, “chase vehicles” were used 
to track the vehicle, go to the location, and download data. The chase vehicle drivers 
called the DAS onboard the instrumented vehicle using a cellular telephone and laptop 
configuration, downloaded the GPS coordinates using in-house software, and then 
displayed a map showing icons indicating the locations of the chase and experimental 
vehicles. The chase vehicle driver then drove to the location of the instrumented vehicle 
and downloaded its data, using a data transfer cable connected to an outlet near the 
instrumented vehicle’s rear license plate, which was connected to a data storage device. 
Each chase vehicle had a laptop computer with a large hard drive to store all vehicle 
data. After each download from the experimental vehicles, the duplication procedure 
and data integrity were verified. Data were again duplicated in Northern Virginia onto 
DVDs. One copy was sent to VTTI, and another copy was kept in Northern Virginia. 

As the data arrived at VTTI, they were downloaded to the company’s network 
attached storage (NAS) and saved. Afterward, quality checks were performed, and the 
data were then remotely deleted from the experimental vehicle’s hard drive. 

Data were downloaded from each experimental vehicle once every 2 to 3 weeks. 
Some vehicles were more difficult to locate and were, therefore, downloaded less fre-
quently. No vehicle operated longer than 5 weeks without someone downloading data. 
Given that the chase-vehicle drivers were able to access GPS coordinates via the DAS, 
instrumented vehicle drivers were frequently unaware that their vehicle’s data had been 
downloaded. Chase vehicle drivers sometimes contacted instrumented vehicle drivers 
who were difficult to locate to obtain the location and optimal time for downloading data. 
Contacting the drivers was done infrequently and only as a last resort to ensure the 
drivers were not reminded regularly of their participation in a driving study.

Post-Hoc Triggering Method 

A crash, near-crash, or incident involves an unexpected event requiring rapid 
action, such as an evasive maneuver, on the part of a driver to avoid a crash. Using 
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the entire dataset, crashes, near-crashes, and incidents were detected by one or more 
of the following three methods: 

Triggering method #1

The first method involved flagging events in which the car’s sensor informa-
tion exceeded a specified value. As stated in Dingus, Klauer, Neale, Petersen, Lee, 
Sudweeks et al. (2006), data were collected continuously onboard the instrumented 
vehicles. As project resources did not allow for the review of all the data, a sensitiv-
ity analysis was conducted to establish post-hoc “triggers,” which use either a single 
signature (e.g., any longitudinal acceleration value greater than ±0.6 g) or multiple 
signatures (e.g., forward TTC value ≤ 4.0 s plus a longitudinal acceleration magnitude 
> 0.5 g) in the driving performance data stream to identify those points in time when a 
driver was likely to have been involved in a crash, near-crash, or incident. See Dingus, 
Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006) for complete discussion of the 
sensitivity analysis. The resulting trigger criteria used are shown in Table 4. 

Table 4. Dependent variables used as event triggers.

Trigger Type Description

1. Lateral  
 acceleration

Lateral acceleration of magnitude 0.7 g or greater.•

2. Longitudinal  
 acceleration

Acceleration or deceleration of magnitude 0.6 g or greater  
Acceleration or deceleration of magnitude 0.5 g or greater coupled with 
a forward TTC of 4 s or less.
All longitudinal decelerations between 0.4 g and 0.5 g coupled with a 
forward TTC value of 4 s or less and that the corresponding forward 
range value at the minimum TTC is not greater than 100 ft.

•
•

•

3. Event button Activated by the driver by pressing a button located on the dashboard 
when an event occurred that he/she deemed critical.

•

4. Forward 
 Time-to-
 collision 
 (TTC)

Acceleration or deceleration of magnitude 0.5 g or greater coupled with 
a forward TTC of 4 s or less.
All longitudinal decelerations between 0.4 g and 0.5 g coupled with a 
forward TTC value of  4 s or less and that the corresponding forward 
range value at the minimum TTC is not greater than 100 ft.

•

•

5. Rear
 Time-to-
 collision (TTC)

Any rear TTC trigger value of 2 s or less that also has a corresponding 
rear range distance of 50 ft or less and any rear TTC trigger value in which 
the absolute acceleration of the following vehicle is greater than 0.3 g.

•

6. Yaw rate Any value greater than or equal to a plus and minus 4º change in heading 
(i.e., vehicle must return to the same general direction of travel) within a 
3-second window of time.

•
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Triggering method #2

The second method occurred when the driver pressed the incident pushbut-
ton above the rearview mirror. Drivers were instructed to depress this button if they 
witnessed a safety-related traffic conflict or were involved in an accident. They were 
instructed to press the button after the event, not during the event. 

Triggering method #3

The third method transpired through data reductionists’ judgment when review-
ing the video events identified via triggering methods #1 and #2. Note that the video 
systems were operational as long as the ignition was on. In identifying events, data 
reductionists looked through epochs flagged from either of the first two methods and 
flagged additional events within the epoch if an incident was detected visually. 

As expected, these three methods proved to have varying success. More than 
95% of all the events were initially identified using triggering method 1 with an additional 
5% identified with triggering method 2. Fewer than 1% of all events were identified 
using triggering method 3, which was to be expected as reductionists viewed a very 
small total percentage of the video collected over the course of data collection. Also, 
more than 50% of the events where the driver pressed the critical incident button were 
also triggered by method 1. 

Data Reduction 

Fourteen data reductionists were hired and trained to reduce the triggered data. 
A data reduction manager gave each data reductionist a manual to guide him or her in 
learning the software and reduction procedures. All trainees practiced data reduction 
with another trained reductionist prior to performing the work independently. After each 
trainee felt comfortable with the process, he or she worked alone under the supervision 
of the data reduction manager. Once the trainee and manager felt confident in the new 
data reductionist’s abilities, he or she began working independently, with “spot check” 
monitoring from the project leader and other reductionists. The data reductionists were 
responsible for analyzing a minimum number of events per week and required to attend 
weekly meetings to discuss lessons learned during the prior week. These meetings 
provided iterative and ongoing training throughout the entire process.
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The validity of all triggered events was determined through video review. A 
crash, near-crash, or incident consistent with the definitions provided previously was 
considered a valid event. An invalid event was a flagged epoch in which there was no 
crash, near-crash, or incident. Data reductionists watched 90-second epochs for each 
event (60 s prior to and 30 s after) and assessed the validity of the trigger. Examples 
of valid events included hard braking in response to a specific crash threat, swerving 
around an obstacle in the roadway, or driving off the roadway. Examples of invalid 
events included TTC values for an object on the side of the roadway, such as a bridge 
abutment, as well as high lateral acceleration on curves not resulting in any loss of 
control, lane departure, close proximity to other vehicles, or an intentional sharp lane 
change into a turn lane. 

To ascertain the severity of an event, data reductionists used the operational 
definitions of each, defined previously, as well as training with expert reductionists. 
Only crashes, near-crashes, and incidents were included in the current analyses. No 
reduction was completed on any event that was deemed to be invalid by the trained 
reductionists.

Data reduction inter- and intra-rater reliability (Phase I)

Some of the data in the 100-Car Study included subjective judgments of video 
and dynamic sensor data by data reductionists. Since these data were based on 
subjective judgments from several different data reductionists, inter- and intra-rater 
reliability was a concern in this study as it has been in similar studies (e.g., Stutts et 
al. 2003). Inter-rater reliability refers to the degree a data reductionist’s subjective 
judgments agreed with another data reductionist’s subjective judgments on the same 
event; in other words, the consistency between data reductionists to score the event 
the same way. Intra-rater reliability refers to the degree a data reductionist’s judgment 
for an event agreed with his or her judgment on the same event at a later time; in other 
words, the consistency of a data reductionist to score the event the same way each 
time. Generally speaking, higher reliability provides greater confidence that the data 
are free of errors. 

Inter- and intra-rater reliability tests were conducted during the last 3 months of 
data reduction. Data reduction was conducted over 12 months. The following, adapted 
from Dingus, Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006), describes the as-
sessment of data reduction inter- and intra-rater reliability.
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Three reliability tests were developed, each containing 24 events, for which 

each data reductionist was required to determine whether the event valid or invalid. If 

the reductionist determined the event was indeed valid, the event was fully reduced. 

Events the reductionist determined were invalid were not reduced and only included in 

the reliability analyses as a means of evaluating raters’ judgment of event severity.

During the first reliability test, two events were also fully reduced, including 

severity level (i.e., crash, near-crash, or incident), driving behaviors, distractions, en-

vironmental variables, etc. Three of the test events in Test 1 were repeated in Test 2, 

and three other events were duplicated between Tests 2 and 3 to obtain a measure of 

intra-rater reliability. Based upon the judgment of the data reductionist managers, one 

epoch in the first test and one in the third were removed from the reliability assessment. 

Therefore, the first and third tests provided reductionists with 20 events for inter-rater 

assessment and 3 events for intra-rater assessment, and the second test provided re-

ductionists with 18 events for inter-rater assessment and 6 for intra-rater assessment.

Using the data reduction-

ist managers’ evaluations of each 

epoch as a “gold standard,” the 

proportion of agreement between 

the expert data reductionists and 

each data reductionist (also called 

rater) was calculated for each test. 

The measures for each rater for 

each testing period, along with a 

composite measure, can be found 

in Table 5. The average across all 

tests was 88.4%; in other words, 

88.4% of the total scores from data 

reductionists agreed with the expert 

data reductionist. Thus, data re-

ductionists were coding the events 

consistently as compared to expert 

data reductionists. 

Table 5. Percentage agreement with ex-
pert data reductionists for event validity 
judgment task.

Rater

Test 1 
Percentage

(n = 23)

Test 2 
Percentage

(n = 24 )

Test 3 
Percentage

(n = 23 )
1 78.3 87.5 91.3

2 65.2 70.8 78.3

3 100.0 91.7 95.7

4 100.0 91.7 87.0

5 100.0 83.3 87.0

6 95.7 87.5 91.3

7 91.3 87.5 91.3

8 91.3 91.7 91.3

9 95.7 70.8 91.3

10 95.7 91.7 87.0

11 95.7 87.5 100.0

12 78.3 87.5 87.0

13 87.0 83.3 96.0

14 78.3 83.3 91.3

Average (across all tests) 88.4
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The percentage agreement across raters for the full data reduction also showed 
acceptable reliability. During the first intra-rater reliability test (Test 2), the mean per-
centage agreement across raters was 67.7%, while the second intra-rater reliability 
test (Test 3) had a mean percentage agreement across raters of 90.5%. Overall, the 
mean percentage agreement across raters during the two intra-rater reliability tests was 
79.1%. The low mean percentage agreement across raters during the first intra-rater 
reliability test was due to three raters who coded the event invalid. An event coded 
invalid was not reduced, and these three raters thus received 0% agreement when 
compared with the expert rater.

Data reduction inter- and intra-rater reliability (Phase II) 

For Phase II, additional data were reduced. As these data were based on subjec-
tive judgments from several different data reductionists, inter- and intra-rater reliability 
was a potential concern. The training method used in Phase II was identical to the 
training method in Phase I (previously described). The inter- and intra-rater reliability 
procedures during Phase II were identical to Phase I, with three tests given to the re-
ductionists. The only difference was that each of the three reliability tests in Phase II 
contained 30 events as compared to 24 events in Phase I. 

Again, using the data reductionist managers’ evaluations of each epoch as a 
“gold standard,” the proportion of agreement between the expert data reductionists and 
each data reductionist was calculated for each test. The inter-rater reliability for Tests 
1, 2, and 3 were 95%, 95%, and 93%, respectively. The average across all inter-rater 
reliability tests was 94%. Thus, data reductionists coded events consistently as com-
pared to expert data reductionists. The percentage agreement across raters for the 
full data reduction also showed acceptable reliability across two intra-rater reliability 
tests at 94%.

Data summary

Table 6 provides a summary of the number of crashes, near-crashes, and inci-
dents identified by the trained data reductionists. As defined previously, an event was 
recorded as a crash if there was physical contact with another object causing kinetic 
energy to be transferred or dissipated. This could include striking another vehicle result-
ing in airbag deployment or a high-speed tire strike, such as hitting a curb at a speed 
of over 30 mph. 
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Note that data were not collected on 13 of the total crashes for several reasons. 
The majority of these crashes occurred prior to system initialization (e.g., the driver 
backed into another vehicle just after leaving a parking spot). The next most common 
cause of data loss resulted from drivers tampering with cameras. There were very few 
sensor failures that resulted in loss of driving data. 

Table 6. The total number of events reduced for each severity level.

Event Severity Total Number

Crashes
 69 

(Plus 13 without complete data)

Near-Crashes  761

Incidents  8,295

Given the high degree in variability among crashes, the 69 crashes were re-
viewed and placed into one of the following four categories:

Category I: Police-reported, or involved air-bag deployment or injury.

Category II: Police-reported, property damage only.

Category III: Non-police-reported, property damage only.

Category IV: Non-police-reported, low-g physical contact or tire strike   
 (greater than 10 mph), no property damage.

The breakdown of crashes in each of these four categories, by crash type, is 
shown in Table 7.

Note that 75% of the single-vehicle crashes were low g-force physical contact 
or tire strikes. These types of crashes, while indicating loss of vehicular control, are not 
currently present in any crash database. While many researchers have hypothesized 
how many non-police-reported collisions occur (e.g., Knipling and Wang 1995), the 
100-Car Study actually collected data on these types of crashes and included them in 
the following analyses. This is another powerful component to naturalistic driving data 
and to the 100-Car database.

•

•

•

•
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Table 7. Crash type by crash severity category.

Category 1 Category 2 

Left Turn Against Path 1 Lane Change 1

Rear-End Struck 2 Left Turn Against Path 1

Run-Off-Road 2
Rear-End Struck 2

Rear-End Strike 3

Subtotal 5 Subtotal 7

Category 3 Category 4 

Backing 2 Animal 2

Object 3 Backing 2

Rear-End Strike 5 Object 5

Rear-End Struck 5 Rear-End Strike 6

Run-Off-Road 5 Rear-End Struck 3

Sideswipe 1 Run-Off-Road 18

Subtotal  21 Subtotal  36

TOTAL  69

Event database for Phase I

All crashes, near-crashes, and incidents that contained values for all driver 
behavior variables and driver state variables were used in Phase I. Both primary and 
secondary drivers were included. Driver behavior variables, such as following too closely, 
and driver state variables, such as driver impairment, were recorded if they occurred 5 
s prior to and 1 s after the onset of an event. Reductionists recorded up to three driver 
behavior variables and as many driver state variables appropriate for each event. 

Driving behaviors were recorded differently than driving state variables due to 
their inherent characteristics. Driving behaviors tend to occur in sequence; for example, 
excessive speed occurs first and braking hard occurs second. Driver states, such as 
drowsiness, for example: are either present or not. Only one driving behavior, therefore, 
was used, as this was primarily the first behavior in a sequence that led to a crash or 
near-crash. Driver state was recorded as either present or not present. Note that all 
driver state variables, but only the first driver behavior recorded, were considered in 
the Phase I analysis. A complete list of the driver behavior variables and driver state 
variables recorded and included in the Phase I analysis is provided in Appendix A.
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Event database for Phase II

All crashes and near-crashes for primary drivers that contained values for all 
driver behavior variables or driver state variables were used in the Phase II analysis. 
Only the primary drivers were included since age and gender information were only 
collected for primary drivers. 

Baseline database for Phase II

The baseline database was comprised of 20,000 6-second segments in which the 
vehicle maintained a velocity greater than 5 mph (referred to as an epoch). Kinematic 
triggers on driving performance data were not used to select these baseline epochs. 
Rather, they were selected at random throughout the 12- to 13-month data collection 
period for each vehicle. Variables such as time of day or type of roadway were not used 
in selecting epochs. Also, selecting by driver was not possible, so baseline epochs 
were randomly selected based upon vehicle identification, not driver. A supplemental 
analysis was conducted to determine the percentage of baseline epochs for which the 
primary driver was present versus a secondary driver. This analysis indicated that the 
primary driver was present for 88.2% of all baseline epochs.

As previously stated, driver behavior data were reduced in detail if they occurred 
5 s prior to a conflict and 1 s after the onset of an event; for example: a driver had to 
have been speeding within 5 s prior to or 1 s after the onset of the event for speeding 
to have been considered a contributing factor to the event. Baseline epochs, therefore, 
were also 6 s in duration. Again reductionists recorded up to three driver behavior 
variables and all driver state variables applicable for each baseline epoch. For these 
analyses, only the most pertinent driver behavior was used (e.g., one driver behavior 
per baseline epoch), whereas each driver state variable was coded as observed or 
not observed. 

While each baseline epoch was randomly selected, the number of baseline 
epochs per vehicle was proportional based upon vehicle involvement in events. This 
proportional sample was conducted to create a case-control dataset in which multiple 
baseline epochs were compared to each event. Each of these elements was analyzed 
as if it was completely independent. 

Case-control designs are optimal for calculating odds ratios, which provide good 
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approximations of relative risks when the probability of event occurrence is low, due to 
the increased power a case-control dataset possesses. Greenberg, Daniels, Flanders, 
Eley, and Boring (2001) argue that using a case-control design is an efficient means 
to study rare events, such as automobile crashes. The causal relationships that exist 
for these events can also be evaluated using relatively smaller sample sizes than are 
used in typical crash database analyses where thousands of crashes may be used.

Four vehicles were not involved in any events, and were, therefore, eliminated 
from the baseline database. The reasons that the four vehicles did not contain any of 
these events included very low mileage due to driver attrition (2 vehicles), frequent 
mechanical malfunctions (1 vehicle), and a possibility of excellent driver performance 
(1 vehicle). Future efforts are required to determine whether excellent driving perfor-
mance or an unknown mechanical failure resulted in no triggered events in the last of 
these four vehicles. 

After the baseline epochs were selected, data reductionists were trained to 
identify each driving behavior. This training included operational definitions of each 
driving behavior to use as a guide, video examples of each risky driving behavior, and 
common mistakes to avoid when coding the driving behaviors. While many of these 
behaviors, such as cutting in too closely, require subjective judgment, the reduction-
ists worked with each other to ensure that all of them made similar judgments. After 
training, data reductionists began to reduce the 6-second baseline epochs and were 
instructed to code all of the driving behaviors that occurred during that epoch. Thus, 
more than one driving behavior could be coded for each baseline epoch (identical to 
the procedures used in Phase I).

Analyses

All data analyses in this report are based on reduced data resulting from the 
data reduction process. These data were copied, created, or edited into a MySQL™ 
database and linked using identification codes, such as vehicle or epoch identification 
numbers. This database made it possible to investigate the relationship between vari-
ous driving behaviors and crashes, near-crashes, incidents, and baseline epochs. 
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RESULTS

The primary goals of this project included: 

Determining the frequency with which drivers engage in potentially risky 
driving behaviors; 

Determining the relationship between specific driving behaviors and crashes, 
near-crashes, and incidents; 

Determining the relationship among the driving behaviors; and 

Determining the differences between high- and low-risk drivers. 

Phase I Results

The following analyses were conducted in Phase I:

The frequency of driving behaviors was determined in the Phase I dataset.

Chi-Square analyses were conducted on the frequency data between the 
severity levels as follows: crashes and near-crashes vs. incidents, and inci-
dents versus baseline epochs.

Frequency of driving behaviors (Phase I)

The master list of behaviors considered for these analyses is shown in Appendix 
A, and includes operational definitions for each. Given that all behaviors were deter-

1.

2.

3.

4.

1.

2.
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mined based upon review of driver videos, the master list of behaviors was broadly 

categorized into two groups: driver state, such as drowsy or aggressive driving, and 

driver behavior. Driving states are behaviors that are more ubiquitous in nature. Driver 

behaviors are risky behaviors that occur at particular moments in time. These catego-

rizations are summarized here.

The driver state risk categories refer to a driver’s emotional, perceptual, or men-

tal state, which may adversely affect driving performance, reaction time, and general 

safety, including: 

Driver Impairment: included all the mental and emotional variables such as 

drowsiness or anger. 

Willful behavior: included all the variables that described repeated intentional 

driving behaviors performed by the driver, such as aggressive driving or intimi-

dation and purposeful violation of traffic laws. 

Total Time Eyes Off the Forward Roadway (EOR): operationally defined as EOR 

time in which the length of one single glance or the sum of multiple glances 

within 6 s is equal to the Total Time EOR. This variable was used as an indicator 

to replace each individual distraction type, such as talking on the cell phone, 

reaching for an object, and combing or fixing hair. This technique prevents the 

data from being diluted while maintaining statistical power. In other words, all 

distraction-related tasks were grouped under the category of total time EOR. 

In a separate analysis of 100-Car data, Klauer, Dingus, Neale, Sudweeks, and 

Ramsey (2006) found that if the total time EOR was greater than 2 s, relative 

crash risk increased to greater than two times that of normal driving. This should 

not be interpreted as implying that some secondary tasks are not more danger-

ous than others, only that for the purposes of this study, secondary tasks were 

grouped according to the amount of time for which the driver’s visual attention 

was diverted from the forward roadway. 

Table 8 shows the frequency of events in the Phase I dataset by severity levels 

for the Driver State risk categories. 

•

•

•
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Table 8. Frequency of events where Impairment, Willful Behavior, and EOR 
Driver State were observed.

Driver State Risk 
Category Specific Driving Behavior

Crashes and 
Near-crashes

N = 476 
(% of Total)

Incidents
N = 5,796

(% of Total)

Impairment

Fatigue 85
(17.9%)

517
(8.9%)

Angry 12
(2.5%)

31
(0.5%)

Other emotional state 4
(0.08%)

16
(0.2%)

Drugs/alcohol 0
(0%)

2
(0.03%)

No impairment 375
(78.8%)

5,230
(90.2%)

Willful Behavior

Aggressive driving/
intimidation

91
(19.1%)

687
(11.9%)

No willful behavior 385
(80.1%)

5,109
(88.1%)

Total Time EOR

Total time eyes are off the 
forward roadway >2 s

138
(29.0%)

1,318
(22.7%)

Total time eyes are off the 
forward roadway ≤2 s

338
(71.0%)

4,478
(77.3)

Figure 11 displays the percentage of crashes or near-crashes and incidents 
where one of these driving state behaviors was a contributing factor. Note that each 
of these driver states is more prevalent in crashes and near-crashes than in incidents. 
This finding will be discussed more fully in subsequent analyses.

Table 9 displays the frequency of events by severity level for the Driving Behavior 
risk categories, which refer to observable driving behaviors while driving an instrumented 
vehicle. The Driving Behavior categories include specific behaviors such as exceeding 
the speed limit, passing on the right, and not wearing a safety belt.

As shown in Table 9, many Driving Behavior risk categories were similar and 
grouped accordingly.
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Table 9. Frequency of events where Driving Behaviors were present.

General 
Driving 

Behavior
Specific Driving Behavior

Crashes/
Near 

Crashes

Inci-
dents

Crashes/
Near 

crashes
N = 476
(% of 
Total)

Incidents
N = 5,796

(% of 
Total)

Inappro-
priate 

Avoidance 
Maneuver

Avoiding animal 5 22
58

(12.2%)
432

(7.5%)Avoiding other vehicle 50 382
Avoiding pedestrian 3 28

Inappro-
priate 
speed

Driving slowly in relation to other traffic 
not below speed limit 0 2

35
(7.4%)

256
(4.4%)

Driving slowly below speed limit 1 3
Exceeded safe speed but not speed limit 16 154
Exceeded speed limit 17 95
Speeding or other unsafe actions in 
work zone 1 2

Improper 
passing/

Lane 
Change

Passing on right 9 54

57
(12.0%)

352
(6.1%)

Other improper or unsafe passing 10 127
Illegal passing 2 86
Did not see other vehicle during lane 
change or merge 35 59

Driving in other vehicle’s blind spot 1 1
Wrong Side of Road, Overtaking 0 25

Traffic 
control 
device 

violation

Right-of-way error decision failure 3 6

8
(1.7%)

34
(0.6%)

Right-of-way error recognition failure 1 6
Right-of-way error unknown cause 0 4
Signal violation did not see 1 2
Signal violation intentional 1 3
Signal violation tried to beat signal 
change 1 2

Stop sign violation did not see 0 1
Stop sign violation intentional and at 
speed 0 3

Stop sign violation rolling stop 1 4
Other sign violation did not see 0 1
Other sign violation intentional 0 2
Other sign violation 0 0

Improper 
braking

Sudden or improper braking 188 2,776
233

(48.9%)
3,226

(55.7%)
Sudden or improper stopping on 
roadway 45 450

Cruise control contributed to late braking 0 0

Close 
Proximity 
to Vehicle

Following too close 24 372
49

(10.3%) 706
(12.2%)

Cutting in too close behind other vehicle 10 82
Cutting in too close in front of other 
vehicle 15 252

No driving 
behavior No Behavior 36 790 36

(7.6%)
790

(13.6%)

Safety Belt
None Used 104 956 104

(21.8%)
956

(16.5%)

Lap/shoulder belt, lap only 372 4,840 372
(78.2%)

4,840
(83.5%)
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The three specific driving behaviors of avoiding an animal, other vehicle, or 
pedestrian, for example: all refer to the driver performing an inappropriate maneuver 
to avoid something in the roadway, and were, therefore, grouped into “inappropriate 
avoidance maneuver.” Examples of this include a driver swerving into oncoming traffic 
to avoid an obstacle in the roadway. The appropriate maneuver would be to either slow 
or stop until traffic had cleared before maneuvering around the object. 

Some events could not be coded accurately and, therefore, had to be eliminated 
from the analysis. Safety belt use, for example, could not always be detected via video 
due to lighting issues or camera angles. Similarly, assessing whether a driver was under 
the influence of drugs or alcohol was difficult unless the driver was actually observed 
consuming alcohol or using drugs on-camera during video reduction, thus, this and 
other such infrequently-observed behavior types (e.g., other emotional state) were 
eliminated due to low statistical power. Thus by eliminating those events that could 
not be coded accurately or were very infrequent reduced the number of crashes and 
near-crashes to 660 (170 crashes and near-crashes were removed) and incidents to 
6,870 (1,425 incidents were removed). 

Figure 12 displays the percentage of driving behaviors that occurred during 
crashes or near-crashes and during incidents.

Note that most of the driving behaviors are present in a higher percentage of 
crashes and near-crashes than incidents except for Close Proximity to other Vehicle. 
This result will be discussed in more depth in the following analyses.

Event Definition

Dingus, Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006) found that crashes 
and near-crashes are kinematically similar to one another, but kinematically different 
from incidents. In other words, crashes and near-crashes contained similar levels of 
hard braking and swerving whereas the incident data did not reach those same levels. 
Given this result and the need to increase statistical power, the data from both crashes 
and near-crashes were combined to estimate relative risk in Phase II analyses.

The current analyses investigated the relationship between potentially risky driv-
ing behaviors and crashes, near-crashes, and incidents. For this reason, determining 
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whether these behaviors occur at the same frequency for crashes and near-crashes 
as for incidents and baseline epochs was necessary. If a difference is shown between 
the three categories, incidents cannot be considered predictive of crashes or be used 
in the Phase II analyses.

Crash/Near-Crash vs. Incident Chi-Square Analyses

Evaluating both Driver State and Overt Driving Behavior risk categories, analy-
ses were performed to determine whether differences existed between the frequency 
of individual behaviors occurring during crashes or near-crashes versus incidents. 

Impairment risk category

A Fisher’s Exact Test found significant differences in the frequency of specific 
driving behaviors between crashes and near-crashes and incidents in the Impairment 
risk category (p < 0.0001). This test does not allow inferences to be made about which 
specific driving behaviors in the Impairment risk category were different. Adjusted stan-
dardized residuals, derived from a Chi-Square test, allow such inferences to be made. 
To interpret, adjusted standardized residual values ≥ 2 or ≤ -2 indicate that a certain 
event is more or less likely than expected.

As drowsiness was of particular interest, a Chi-Square test was performed. The 
test found a significant difference in the frequency of crashes and near-crashes versus 
incidents where driver drowsiness was a contributing factor (X2

(1) = 24.35, p < 0.0001). 
The adjusted standardized residuals indicated drivers were more likely to be driving 
drowsy during a crash or near-crash than during an incident. 

Willful Behavior/Aggressive Driving risk category

The Chi-Square test found a significant difference in the frequency of willful 
behaviors contributing to crashes and near-crashes versus incidents (X2

(1) = 6.43, p 
< 0.05). The adjusted standardized residuals indicated that drivers were more likely to 
be driving aggressively during a crash or near-crash than during an incident. 

Total Time EOR risk category

The Chi-Square test did not find a significant difference for total time EOR greater 
than 2 s prior to crashes or near-crashes as compared to incidents. 
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Driving Behavior risk category

For the Driver Behavior risk category, safety belt use was analyzed separately, 
since it does not reflect an actual behavior with respect to the vehicle. It may reflect 
general attitudes toward safe driving, however. 

For the driver behaviors excluding safety belt use, the Chi-Square test found 
a significant difference between frequency of occurrence during crashes and near-
crashes as compared to incidents (X2

(6) = 51.0, p < 0.0001). The adjusted standardized 
residuals indicated that drivers were more likely to engage in inappropriate avoidance 
maneuvers, drive at inappropriate speeds, commit traffic-signal violations, and brake 
inappropriately prior to crashes and near-crashes than prior to incidents. Conversely, 
drivers were more likely to be following too closely just prior to an incident than just 
prior to a crash or near-crash.

The Chi-Square test did not find a significant difference in the frequency of safety belt 
use during crashes and near-crashes relative to during incidents (X2

(1) = 2.31, p > 0.05). 

Summary of Crash/Near-Crash vs. Incident Chi-Square 
Analyses

The results of the Chi-Square tests showed that many of the driving behaviors 
were more likely to occur during crashes and near-crashes than during incidents. Driv-
ers involved in a crash or near-crash, for example: were more likely to be drowsy, drive 
aggressively, engage in inappropriate avoidance maneuvers, drive at inappropriate 
speeds, commit traffic-signal violations, or brake inappropriately than when involved 
in an incident. Drivers involved in a crash or near-crash, were less likely, however, to 
be following too closely (proximity conflict) during a crash or near-crash than during an 
incident. Although this result may seem counterintuitive, this is most likely an artifact 
of the heavily congested traffic conditions in and around the Washington, DC area. 
While following too closely should not be advocated as a safe driving behavior, drivers 
learning to be more alert and responsive to these dynamic traffic environments may 
have contributed to this result. Other possible explanations for this unlikely finding are 
discussed in the Summary of Phase II Results.

These results indicate that crashes and near-crashes should be viewed separately 
from incidents. Events in Phase II thus consist of crashes and near-crashes, but not inci-
dents; however, incidents and baseline epochs may not significantly differ from each other. 



52

Rather than excluding incidents from further analyses, they were compared to 
baseline epochs. If the behaviors associated with incidents were found not to differ 
from those associated with baseline epochs, then incidents could be combined with 
baseline epochs in Phase II analyses. If the behaviors associated with incidents and 
baseline epochs were found to be significantly different, however, incidents would be 
excluded from further analyses. 

Incident vs. Baseline Epoch Chi-Square Analyses

Because several variables are being considered for modeling, EOR time was 
used as a surrogate to replace each individual distraction type. This technique pre-
vents the data from being diluted while maintaining statistical power. In other words, all 
distraction-related tasks were grouped according to the amount of time for which the 
driver’s eyes were directed away from the forward roadway. To assess EOR, trained 
reductionists performed eye-glance analysis on 4,977 randomly selected baseline 
epochs, primarily because project resources permitted eye-glance reduction, a highly 
time-intensive process, for only 4,977 of the baseline epochs. Table 10 shows the fre-
quency of specific driving behaviors in the Driver State risk categories during incidents 
and the 4,977 baseline epochs.

Table 10. Frequency of incidents and baseline epochs where Impairment, 
Willful Behavior, and EOR Driver State were observed.

Driver State Risk 
Category Specific Driving Behavior

Incidents
(N = 2,538)

N
(% of Total)

Baseline 
Epochs

(N = 4,033)
N

(% of Total)

Impairment
Fatigue 239

(9.4%)
174

(4.3%)

No impairment 2,299
(90.6%)

3,859
(95.7%)

Willful Behavior
Aggressive driving/intimidation 551

(21.7%)
120

(3.0%)

No willful behavior 1,987
(78.3%)

3,913
(97.0%)

Total Time EOR
Total time EOR > 2 s 878

(34.6%)
569

(14.1%)

Total time EOR ≤2 s 1,660
(65.4%)

3,464
(85.9%)
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It was determined during the review of events that Improper Braking could not be 
used as a variable in the model. Braking is usually an appropriate behavior based on a 
driver’s response to his or her driving environment, and while the brake force may have 
been high, the end result was avoiding a collision. Improper Braking was, therefore, re-
moved from the analysis. Furthermore, Angry, Other Emotional State, and Drugs/Alcohol 
in the Impairment risk category were not assessed because they were not observed 
during baseline epochs. Note that drivers may have been impaired by alcohol or drugs 
during baseline epochs, incidents, near-crashes, or crashes; however, the study design 
employed here would not have allowed such impairment to be determined unless the 
driver was actually observed, via the in-vehicle camera, consuming alcohol or using 
drugs. Removing these variables reduced the total frequency of incidents to 3,611 and 
baseline epochs to 4,033. Figure 13 displays the percentage of incidents and baseline 
epochs during which each of the driver states were observed. Note again that each of 
these driver states is present in a higher percentage of incidents than in baseline epochs. 

Figure 13. Percentage of incidents (N = 2,538) and baseline epochs (N = 
4,033) where Driver States were present.
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Table 11 shows the frequency of general driving behaviors in the Driving Behavior 
risk categories during the incidents and baseline epochs.

Table 11. Frequency of incidents and baseline epochs where Driving 
Behaviors were present.

General Driving 
Behavior

Specific Driving 
Behavior

Inci-
dents

Baseline
Epochs

Incidents 
(N=2,538)

N 
(% of Total)

Baseline 
Epochs

(N=4,033)
N 

(% of Total)

Inappropriate 
Avoidance 
Maneuver

Avoiding animal 22 0

426
(16.8%)

4
(0.1%)Avoiding other vehicle 377 2

Avoiding pedestrian 27 2

Inappropriate 
speed

Driving slowly in 
relation to other traffic 
not below speed limit

2 1

252
(9.9%)

105
(2.6%)

Driving slowly below 
speed limit 3 0

Exceeded safe speed 
but not speed limit 151 50

Exceeded speed limit 94 54

Speeding or other 
unsafe actions in work 
zone

2 0

Improper 
passing

Passing on right 53 2

346
(13.6%)

5
(0.1%)

Other improper or 
unsafe passing 124 1

Illegal passing 85 1

Did not see other 
vehicle during lane 
change or merge

58 0

Driving in other 
vehicle’s blind spot 1 0

Wrong side of road, not 
overtaking 25 1
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Traffic control 
device violation

Right-of-way error 
decision failure 6 0

31
(1.2%)

52
(1.3%)

Right-of-way error 
recognition failure 5 0

Right-of-way error 
unknown cause 4 0

Signal violation did not 
see 2 0

Signal violation 
intentional 3 0

Signal violation tried to 
beat signal change 2 0

Stop-sign violation did 
not see 1 1

Stop-sign violation 
intentional and at 
speed

2 14

Stop-sign violation 
rolling stop 3 37

Other sign violation did 
not see 1 0

Other sign violation 
intentional 2 0

Other sign violation 0

Close proximity 
to Vehicle

Following too close 366 781

696
(27.4%)

786
(19.5%)

Cutting in too close 
behind other vehicle 81 5

Cutting in too close in 
front of other vehicle 249 0

No driving 
behavior None Used 787 3,081 787

(31.0%)
3,081

(76.4%)

Safety Belt

Lap/shoulder belt, lap 
only 545 493 545

(21.5%)
493

(12.0%)

No Belt Used 3,066 3,540 1,993
(78.5%)

3,540
(88.0%)
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Figure 14 displays the percentage of driving behaviors that occurred during 
incidents and baseline epochs. 

Evaluating both Driver State and Driver Behavior risk variables, Chi-Square 
analyses were performed to determine whether a difference exists in the frequency of 
occurrence of individual behaviors during incidents and baseline epochs. The results 
of these tests are described herein.

Impairment risk category

The Chi-Square test found a significant difference in the frequency of impaired 
driving between incidents and baseline epochs (X2

(1) = 19.8, p < 0.0001). The adjusted 
standardized residuals indicated that drivers were more likely to be driving while drowsy 
during an incident than during a baseline epoch. 

Willful Behavior risk category

The Chi-Square test found a significant difference in the frequency of drivers 
engaging in willful behaviors between incidents and baseline epochs (X2

(1) = 358.9, p 
< 0.0001). The adjusted standardized residuals indicated drivers were more likely to 
be driving aggressively during an incident than during a baseline epoch. 

Total Time EOR risk category

The Chi-Square test found a significant difference in the frequency of drivers’ 
total time EOR between incidents and baseline epochs (X2

(1) = 129.3, p < 0.0001). The 
adjusted standardized residuals indicated that drivers were more likely to be looking 
away from the forward roadway for >2 s prior to an incident than during a baseline epoch. 

Driving Behavior risk category

The Chi-Square test found a significant difference in the frequency of specific 
driving behaviors, again excluding safety belt use, between crashes and near-crashes 
and baseline epochs (X2

(5) = 1,559.0, p < 0.0001). The adjusted standardized residuals 
indicated five differences in the frequency of general driving behaviors between incidents 
and baseline epochs. Drivers were more likely to be engaging in inappropriate avoid-
ance maneuvers, driving at inappropriate speeds, and engaging in improper passing 
maneuvers during an incident than during a baseline epoch. Drivers were less likely to 
be following too closely during an incident than during a baseline epoch.
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Safety Belt risk category

The Chi-Square test found a significant difference in the frequency of safety belt 

use for drivers involved in incidents versus drivers’ baseline epochs (X2
(1) = 13.4, p < 

0.0003). The adjusted standardized residuals indicated that drivers were more likely 

to be driving without their safety belts when involved in an incident than during normal, 

baseline driving. 

Summary of Incident vs. Baseline Epoch Chi-Square 
Analyses

The results of these Chi-Square tests clearly show that incidents were signifi-

cantly different from baseline epochs. Drivers involved in an incident were more likely 

to be drowsy, drive aggressively, look away from the forward roadway for >2 s, avoid 

an object, speed, perform improper passing maneuvers, and not wear their safety 

belts. Interestingly, Dingus, Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006) was 

unable to differentiate incidents from baseline epochs using kinematic signatures (i.e., 

lateral/longitudinal accelerometers, TTC, etc.). Nonetheless, the present analysis was 

able to distinguish between incidents and baseline epochs by assessing observable 

driver behavior. 

Drivers were more likely to be following too closely during normal, baseline 

driving than prior to incidents, which once again seems counterintuitive. Nonetheless, 

this provides more evidence for the earlier hypothesis that following too closely occurs 

frequently during normal, baseline driving because of the normally heavy traffic condi-

tions in and around the Washington, DC area. 

While incidents were significantly different from crashes and near-crashes, 

they were also significantly different from baseline epochs. While this is certainly an 

interesting result that may lend itself to future study, it indicates that incidents are not 

predictive of crashes. This result is congruent with those reported in Dingus, Klauer, 

Neale, Petersen, Lee, Sudweeks et al. (2006). Thus, incidents were not included as 

events or non-events in Phase II and will be excluded from subsequent analyses.
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Phase II Results

Phase II results are provided for the following four separate analyses: 

Comparison of the frequency of behaviors in crashes and near-crashes to 
that in the baseline epochs

Identification of main effects of specific driving behaviors via logistic regres-
sion modeling 

Identification of interactions between different driving behaviors via logistic 
regression modeling

Comparison of risky driving behavior engagement by high- vs. low-risk drivers 

Frequency of driving behaviors (Phase II)

For Phase II, risky driving behaviors were grouped in the same manner as for Phase I. 

Table 12 displays the frequency of crashes and near-crashes and baseline ep-
ochs in the Driver State categories of Impairment, Willful Behavior, and Total Time EOR.

Table 12. Frequency of crashes/near-crashes and baseline epochs where 
Impairment, Willful Behavior, and EOR > 2 seconds were present.

Driver State 
Category Specific Driving Behavior

Crashes and 
Near-Crashes 

(N = 376)
N

(% of Total)

Baseline 
Epochs 

(N = 4,033)
N

(% of Total)

Impairment
Drowsiness 47

(12.5%)
174

(4.3%)

No impairment 329
(87.5%)

3,859
(95.7%)

Willful Behavior
Aggressive driving/intimidation 66

(17.6%)
120

(3.0%)

No willful behavior 310
(82.4%)

3,913
(97.0%)

Total Time EOR
Total time EOR > 2 s 92

(24.5%)
569

(14.1%)

Total time EOR ≤ 2 s 284
(75.5%)

3,464
(85.9%)

1.

2.

3.

4.
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Figure 15 shows the percentage of baseline epochs, and crashes and near-
crashes, in which the various driver states were observed, in the Phase II dataset. 

Figure 15. Percentage of crashes and near-crashes (N = 376) and baseline 
epochs (N = 4,033)  where Driver States were present.
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Note that drowsiness, aggressive driving, and total time EOR are all present 

in a higher percentage of crashes and near-crashes than in baseline epochs. These 

relationships will be discussed more in-depth in the odds ratio discussion.

Table 13 displays the frequency of crashes and near-crashes and baseline 

epochs in which specific behaviors were observed.

As in Phase I, Improper Braking could not be used as a variable in the model 

because braking is usually an appropriate behavior based on a driver’s response to his 
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or her driving environment, and while the brake force may have been high, the end result 
was avoiding a collision. “Improper Braking,” therefore, was removed from the analysis.

Table 13. Frequency of crashes/near-crashes and baseline epochs where 
Driving Behaviors were present.

General
Driving 

Behavior
Specific Driving Behavior

Crashes/
Near 

crashes
(N = 376)

N
(% of Total)

Baseline 
Epoch

(N = 4,033)
N

(% of Total)

Inappropriate 
Avoidance

Avoiding animal
13

(3.5%)

4
(0.10%)Avoiding other vehicle

Avoiding pedestrian

Inappropriate 
speed

Driving slowly in relation to other traffic not 
below speed limit

33
(8.8%)

105
(2.6%)

Driving slowly below speed limit
Exceeded safe speed but not speed limit
Exceeded speed limit
Speeding or other unsafe actions in work 
zone

Improper 
passing

Passing on right
70

(18.6%)
10

(0.25%)Other improper or unsafe passing
Illegal passing

Traffic control 
device violation

Right-of-way error decision failure

8
(2.1%)

52
(1.3%)

Right-of-way error recognition failure
Right-of-way error unknown cause
Signal violation did not see
Signal violation intentional
Signal violation tried to beat signal change
Stop sign violation did not see
Stop sign violation intentional and at speed
Stop sign violation rolling stop
Other sign violation did not see
Other sign violation intentional
Other sign violation

Close proximity 
to other vehicle

Cutting in too close behind other vehicle
22

(5.9%)
781

(19.4%)Cutting in too close in front of other vehicle
Following too close

No Seat Belt 
Use

58
(15.4%)

493
(12.2%)

No driving 
behavior

172
(45.7%)

2,588
(64.2%)
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Figure 16 shows the percentage of crashes and near crashes, and baseline ep-
ochs, during which specific driving behaviors were observed, in the Phase II dataset.

Note that each driving behavior was present in a higher percentage of crashes 
and near-crashes than in baseline epochs except for close proximity to other vehicles. 
Again, these relationships will be discussed in more detail in the odds ratio section of 
this report.

Modeling strategy (Phase II)

The primary goal of this analysis was to determine whether engaging in specific 
driving behavior could predict crashes and near-crashes. There was also interest in 
investigating interactions between various behaviors and the impacts on crash risk of 
these interactions. The goal of the modeling process was to arrive at a parsimonious 
model that adequately fit the data.

Several attempts were made to model the interactions present. While some 
efforts were more successful than others, several limitations continually produced 
insurmountable problems. First, several behavioral categories did not have enough 
data present for both crashes and near-crashes or for baseline epochs to statistically 
model (e.g., inappropriate avoidance). Second, the modeling strategy used required 
complete data for each crash, near-crash, and baseline epoch included in the model. 
In other words, if a given crash contained a missing value for one or more of the vari-
ables present in the model (e.g., safety belt use), then that crash was excluded by 
necessity. Thus, using multiple types of behaviors in the model ultimately led to the 
removal of 46% of the crashes and near-crashes due to variables with missing values, 
and the analysis was conducted using only the remaining 54% of the available data 
from crashes and near-crashes. Given this severe reduction in data, a stable interac-
tion model could not be produced. Odds ratios, therefore, were estimated using only 
the main effects model.

The revised analysis strategy for Phase II used a forward selection logistic re-
gression modeling approach. The dependent variable was a binary indicator of whether 
a given segment was an event (crash or near-crash, coded as “1”) or a baseline epoch 
(coded as “0”). Specific driving behaviors and driver states served as the covariates 
of interest. 
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The general modeling strategy consisted of evaluating each covariate in a univari-
ate analysis. Given the exploratory nature of these analyses, less conservative alpha lev-
els were used to assess statistical significance. Thus, variables demonstrating statistical 
significance at the level of α = 0.25 were included in simultaneous evaluations. Various 
factors were taken into consideration when removing or retaining a term in the simultane-
ous evaluations. The behaviors of Traffic Control Device Violation and Gender were both 
removed, as these terms were not statistically significant. The simultaneous evaluations 
began with estimating main effect parameters, and then attempted to estimate param-
eters for relevant interactions. A traditional statistical significance level of α = 0.10 was 
used in the simultaneous evaluations. The logistic regression parameter values were 
then used to calculate odds ratio estimates of the relative risk that given driver states 
or driving behaviors were associated with the occurrence of crashes or near-crashes.

The resulting main effects model includes Driver Impairment, Safety Belt Use, 
Willful Behavior, Total Time EOR, Inappropriate Avoidance, Close Proximity to Other 
Vehicle, Inappropriate Speed, Improper Passing, and Age.

Assessment of goodness of fit (Phase II)

A key component of the data modeling process is to provide an assessment 
of how well the model fits the data. The methods include the Hosmer and Lemeshow 
goodness-of-fit test and the calculation of the area under the Receiver Operator Char-
acteristic (ROC) curve. An ROC curve plots the probability of detecting true signal 
(sensitivity) versus the probability of detecting a false signal (1—specificity) over a 
range of cutpoints (Figure 17).

The assessment of goodness of fit indicated adequate overall model fit and ad-
equate discrimination. The Hosmer and Lemeshow goodness-of-fit test indicated that 
the model adequately fit the data used (Ҳ (8) = 4.25, p = 0.80). The second evaluation, 
calculating the area under the ROC curve, also suggested acceptable discrimination 
between the crashes and near-crashes and baseline epochs. 

In plotting an ROC curve, the predicted outcome is determined by comparing 
the predicted probability for an observation to a predetermined value or cutpoint; that 
is, if the predicted probability exceeds the cutpoint, the observation is classified as an 
event, and if the predicted probability is less than the cutpoint, the outcome is classified 
as a non-event. A common cutpoint value is 0.5.
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The area under the ROC curve, which ranges from 0 to 1, indicates the model’s 
ability to distinguish between observations that demonstrate the event of interest and 
those that do not. To assist in interpreting Figure 17, a model with near-perfect discrimi-
nation would have a 0.9 probability of detecting a true signal at a 0.05 probability of 
detecting a false signal. Hosmer and Lemeshow (2000) state that an area of between 
0.7 and 0.8 under the ROC curve indicates acceptable discrimination. The final main 
effects model obtained an area of 0.753 under the ROC curve. Thus, the model appears 
to be able to discriminate and adequately fit the data. 

Odds ratios

The ratio of odds is a commonly employed measure of association between the 
presence of cases (crash and near-crash events) and the controls (baseline driving 
epochs). Odds ratios are used to approximate relative risk in case-control designs. This 
is necessary due to the separate sampling employed for the events and baselines and is 
valid for evaluations of rare events (Greenberg, Daniels, Flanders, Eley, and Boring 2001). 

This analysis assesses which behaviors are associated with increased risk. 
Odds ratios not statistically different from 1.0 reveal no evidence that engaging in the 
specific behavior in question is associated with increased risk of involvement in a crash 
or near-crash, relative to the same risk when not engaging in that behavior. An odds ratio 
that is statistically greater than 1.0 indicates the particular behavior is associated with 
increased risk of being involved in a crash or near-crash while engaging in the behavior 
in question, relative to the same risk when not engaging in that behavior. Similarly, an 
odds ratio statistically less than 1.0 indicates the particular behavior is associated with 
decreased risk of being involved in a crash or near-crash while engaging the behavior 
in question, relative to the same risk when not engaging in that behavior. 

Logistic regression-based odds ratio calculations

The odds ratios and corresponding 95% confidence intervals are presented in 
Table 14. Ratios significantly different from 1.0 are shown in bold typeface. 

Of primary interest is that speeding inappropriately, driving while drowsy, driving 
aggressively, and looking away from the forward roadway for greater than 2 s, were all 
associated with increased risk of being involved in a crash or near-crash, and thus are 
deemed potentially risky behaviors. Driving in close proximity to other vehicles, which 
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occurred frequently for both crashes and near-crashes as well as during baseline ep-
ochs, was associated with an odds ratio significantly lower than 1.0, suggesting that 
it may be associated with a reduction in the risk of being involved in a crash or near-
crash. This apparently counterintuitive finding is discussed further in the Summary of 
Phase II Results at the end of this section. 

Table 14. Odds ratios and 95% confidence intervals for all independent 
variables included in the main effects model.

Risky Driving State or 
Risky Driving Behavior 

95%
Lower 

Confidence 
Interval

Odds Ratio

95%
Upper 

Confidence 
Interval

Inappropriate Passing 36.2 72.7 146.0
Inappropriate Avoidance Maneuver 10.0 31.7 100.8
Drowsiness 2.0 2.9 4.3
Inappropriate Speed 1.7 2.9 4.8
Aggressive Driving/Intimidation/
Purposeful Violation of Traffic Laws 1.3 2.1 3.4

Total Time EOR > 2 s 1.4 1.9 2.5
Age 0.98 0.99 1.0

Safety Belt Usage 0.5 0.8 1.0

Close Proximity to Other Vehicle 0.3 0.4 0.6

“Bolded” odds ratios were significant at p < 0.05.
These odds ratios are based upon 376 crashes and near-crashes and 4,033 baseline epochs.

Note that the odds ratios for Inappropriate Avoidance maneuver and Improper 
Passing were 32 and 73, respectively. These may be confounded by the operational 
definition of a crash or near-crash in which the driver was inappropriately avoiding an 
object or passing another vehicle to attempt to avoid a collision. Also note the wide 
confidence intervals surrounding these extremely high odds ratio point estimates. This 
suggests the point estimates are not stable and further indicates that these data are 
confounded. 

The odds ratio associated with safety belt use was not significantly different 
from 1.0; thus, the current study provides no evidence that safety belt use or non-use 
affects the risk of being involved in a crash or near-crash. This result should not be 
interpreted as implying that safety belt use does not affect safety. Extensive safety 
literature corroborates that drivers are at considerably less risk of sustaining injuries 
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during a crash when wearing their safety belts. Rather, this result suggests that the 
mere act of wearing one’s safety belt does not directly affect whether a driver becomes 
involved in a crash or near-crash. 

Age was analyzed as a continuous variable for 1-year increments. The odds ratio 
for Age was not significantly lower than 1.0. Again, note that all primary drivers in the 
study sample were between 18 and 68 years of age. Most transportation research sug-
gests that the most dramatic age differences occur for drivers younger than 18 and older 
than 70 years of age. This may explain why no affect for age was shown in this analysis. 

The odds ratios presented in Table 14 represent the odds that the Driver State 
or Driving Behavior in question was observed during a crash or near-crash, relative to 
the odds that the state or behavior was observed during an epoch. These odds ratios 
are adjusted to estimate the impact on the odds of observing an event while holding 
constant, and controlling for the effects of all other states and behaviors included in 
the model except the one in question. Crude (unadjusted) odds ratios for these Driver 
Behaviors and Driving States can be computed directly from the data presented in 
Tables 11 and 12, by computing the odds of observing each state or behavior during a 
crash or near-crash, and dividing by the odds of observing the same state or behavior 
during a baseline epoch. 

For example: using data from Table 12, reproduced in Table 15, the odds of a 
driver exhibiting drowsiness, in the case of a crash or near-crash (“event”), are given by:

Odds(drowsiness | event) = 
   events involving drowsiness       

= 
      47       

= 
 
.1339

             events not involving drowsiness      398 – 47

The odds of a driver being drowsy in the case of a baseline epoch (“epoch”) is 
calculated similarly, as:

Odds(drowsiness | epoch) = 
   epochs involving drowsiness       

= 
       174         

= 
 
.0439

              epochs not involving drowsiness      4,136 – 174

The crude odds ratio of observing drowsiness in a crash or near-crash, relative 
to observing drowsiness in an epoch, is given by the ratio of the above odds:

OR = 
Odds(drowsiness | event)    

=   
.1339   

= 
 
3.05

 Odds(drowsiness | epoch)      .0439
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Comparisons between the crude odds ratios associated with the driver states 
and driving behaviors included in the regression model, and the model-based adjusted 
odds ratios, are presented in Table 15.

Table 15. Comparison of adjusted odds ratios from logistic regression model 
and crude odds ratios.

Driver State or
Driving Behavior

Crashes and 
Near-Crashes 
(Total N=376)

Epochs 
(Total N=4,033)

Crude 
Odds 
Ratio

Adjusted 
Odds 
Ratio

N Odds N Odds

Inappropriate Passing 21 0.0592 4 0.0010 59.20 72.70

Inappropriate Avoidance 
Maneuver 60 0.1899 4 0.0010 189.90 31.70

Drowsiness 47 0.1429 174 0.0451 3.17 2.90

Inappropriate Speed 33 0.0962 107 0.0273 3.52 2.90

Aggressive Driving/
Intimidation/Purposeful 
Violation of Traffic Laws 66 0.2129 120 0.0307 6.93 2.10

Total Time EOR > 2 s 92 0.3239 569 0.1643 1.97 1.90

Safety Belt Usage 58 0.1824 493 0.1393 1.31 0.80

Close Proximity to Other 
Vehicle 46 0.1394 806 0.2498 0.56 0.40

As Table 15 shows, the model-based adjusted odds ratios generally agreed with 
the crude odds ratios computed directly. The two ratios disagreed more substantially 
for Inappropriate Passing and Inappropriate Avoidance Maneuver, both of which were 
deemed unstable, for Safety Belt Use, which was not statistically significant in the 
regression model, and for Aggressive Driving. The crude odds ratio and the adjusted 
odds ratios agreed very well in Drowsiness, Inappropriate Speed, Total Time EOR ≥2 
s, and Close Proximity to Other Vehicle.

High-risk vs. low-risk drivers

An exploratory analysis was conducted to determine whether a difference ex-
ists in the frequency of engaging in potentially risky driving behaviors between drivers 
with a high rate of crashes and near-crashes and those who did not experience any 
crashes or near-crashes. For the purpose of the analysis, the top and bottom octiles 
(i.e., 12.5%) of drivers in the 100-Car Study were selected, using 25% of the data. 
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These drivers were selected based on their rate of events (crashes, near-crashes, 
and incidents) per 10,000 mi. The Low Risk group was comprised of 3 females and 
10 males (Mean Age = 39.6, Range = 24 to 57) and an event rate of 2.06/10,000 mi 
(Range 0 to 6.6). The High Risk group was comprised of 7 females and 6 males (Mean 
Age = 26.2, Range = 19 to 43) and an event rate of 219.5/10,000 mi (Range 135.7 to 
447). Table 16 displays the frequency of each driver state and driving behavior for the 
High- and Low-Risk groups during the baseline epochs.

Table 16. Frequency and percentage of baseline epochs for the High- and 
Low-Risk groups in each Driver State or Driving Behavior category.

Driver State/ 
Behavior Category

Specific Driver State/
Behavior Low-Risk Group High-Risk Group

Impairment
Drowsiness 6 

(2.8% of low risk)
56

 (6.1% of high risk)

No impairment 209 
(97.2% of low risk)

856
 (93.9% of high risk)

Driving Behavior

Inappropriate avoidance 
maneuver

0
(0% of low risk)

2
(.2% of high risk)

Close proximity 42
(19.5% of low risk)

166
(18.2% of high risk)

Improper passing 0
(0% of low risk)

5
(.5% of high risk)

Inappropriate speed 5
(2.3% of low risk)

28
(3.1% of high risk)

Traffic sign/signal 
violation

2
(.9% of low risk)

14
(1.5% of high risk)

No driving behavior 166
(77.2% of low risk)

697
(76.4% of high risk)

Safety Belt
None used/unknown 21

(9.8% of low risk)
156

(17.1 of high risk)

Lap/shoulder belt, lap 
only

194
(90.2% of low risk)

756
(82.9% of high risk)

Willful Behavior

Aggressive driving/
intimidation

4
(1.9% of low risk)

33
(3.6% of high risk)

No willful behavior 211
(98.1% of low risk)

879
(96.4% of high risk)

Total Time EOR
Total time EOR > 2 s 25

(11.6% of low risk)
124

(13.6% of high risk)

Total time EOR ≤ 2 s 190
(88.4% of low risk)

788
(86.4% of high risk)
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Chi-Square tests were performed on each of the significant risk categories in 
Table 16 except Age (which was excluded from the analysis). Since more than 20% of 
the cells in the Driving Behavior risk category had expected counts of < 5, a Fisher’s 
Exact test was performed. The Chi-Square tests for Drowsiness (X2

(2) = 3.8, p < 0.05) 
and Safety Belt Use (X2

(1) = 7.1, p < 0.05) found a significant difference between the 
High- and Low-Risk groups. These results suggest that high-risk drivers drive without 
a safety belt more frequently and also drive drowsy more frequently than the low-risk 
drivers, as operationally defined by this analysis. 

The Chi-Square tests indicated no significant difference between the High and 
Low Risk groups for the Driving Behavior risk category. Similarly, the Chi-Square for the 
Willful Behavior (X2

(1) = 1.67, p > 0.05) and EOR (X2
(1) = 0.625, p > 0.05) risk categories 

did not find a significant difference between the High- and Low-Risk groups. 

Finally, note the rate of involvement in crashes, near-crashes, and incidents 
of the drivers defined as High Risk exceeded that of those defined as Low Risk by a 
factor of more than 100.

Summary of Phase II Results

The logistic regression analysis performed using a main effects model demon-
strates that nearly all of the driving states and behaviors (all except Safety Belt Use) 
significantly contribute to the regression model. Four driving states and behaviors had 
odds ratios significantly greater than 1.0, suggesting those behaviors are associated 
with increased risk of being involved in a crash or near-crash. Those behaviors were:

Inappropriate speed

Driver drowsiness

Total time EOR > 2 s

Aggressive driving/willful behavior

After adjusting for other potentially risky behaviors and driver states included in 
the regression model, driving at inappropriate speed was found to be associated with 
roughly triple the odds of involvement in a crash or near-crash, relative to driving at 
appropriate speed (OR = 2.9, 95% CI = 1.7 – 4.8). 

•

•

•

•
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With regard to drowsiness, the odds of a crash or near-crash were nearly tripled 
when drivers were drowsy, than when not drowsy (OR = 2.9, 95% CI = 2.0 – 4.3). This 
is not all that surprising since drowsiness makes drivers less attentive, slows their 
reactions, and impairs their judgment (Lyznicki et al. 1998; Leger 1995). Driving while 
drowsy has been estimated to contribute to 76,000 to 100,000 crashes each year in 
the United States, resulting in 1,500 fatalities and thousands of injuries (Knipling and 
Wang 1995; Wang et al. 1996).

Looking away from the forward roadway for greater than 2 s was associated with 
nearly a doubling of the odds of being involved in a crash or near-crash, as compared 
to periods when the driver’s eyes were not diverted from the forward roadway for as 
long as 2 s (OR = 1.9, 95% CI = 1.4 – 2.5). A growing body of evidence suggests that 
tasks requiring longer and more frequent glances are detrimental to safe driving (Klauer, 
Dingus, Neale, Sudweeks, and Ramsey 2006). Inattention has been cited in 39% of 
rear-end crashes and 33% of lane-change crashes in the 1997-2000 Crashworthiness 
Data System (Campbell, Smith, and Najm 2003). Nevertheless, inattention to the for-
ward roadway (especially for total glance time ≥ 2 s) is very dangerous. 

Lastly, drivers were more likely to be involved in a crash or near-crash when ex-
hibiting aggressive driving behavior than when not driving aggressively (OR = 2.1, 95% 
CI = 1.3 – 3.4). This is not all that surprising because aggressive driving is composed 
of a constellation of potentially risky driving behaviors occurring together (driving at 
excessive speeds, weaving through traffic, and running stop lights and signs, among 
others). Public uneasiness over driver aggression has risen over the past several years, 
as it has become an increasingly familiar danger on roadways (e.g., James and Nahl 
2000). Incidents of aggressive driving have risen 51% since 1990 (Vest, Cohen, and 
Tharp, 1997). Aggressive driving often results in negative outcomes, such as property 
damage, injury, and death (e.g., Mizell 1997).

Drivers in close proximity to another vehicle, while cutting in too closely, for ex-
ample: or following another vehicle too closely, were less likely to be involved in a crash 
or near-crash, than drivers maintaining a headway of 2 s or greater. This, however, 
should not be interpreted to mean that tailgating is a safe driving behavior. Rather, this 
is most likely an artifact of the heavy traffic conditions that are common in and around 
the Washington, DC area, combined with the fact that forward TTC was a trigger for 
crash and near-crash events. 
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When a driver is in heavy or “stop-and-go” traffic, the environmental conditions 
may, in fact, dictate that the driver pay closer attention to the leading traffic. In other 
words, in very dense urban traffic conditions, drivers may be more attentive and exhibit 
faster reaction times than they would in less dense traffic. Thus, driving with relatively 
short headways may be associated with decreased crash risk only under certain con-
ditions (e.g., dense traffic) because of confounding associated with different levels of 
driver alertness under different traffic conditions. 

Similarly, the sub-population of drivers in the 100-Car Study who accounted for 
most occurrences of following too closely may have been more skillful or more alert 
than other drivers in the study, and that the finding reported here may be confounded 
by individual differences in driving skill or performance. As noted earlier, analyses were 
conducted on all crashes, near-crashes, and epochs in aggregate, because crashes and 
even near-crashes are too rare to model statistically at the individual driver level while 
maintaining adequate statistical power, even with the great quantity of data available 
in the 100-Car database. The findings reported here may have also been confounded 
by other factors, such as road type, time of day, or weather conditions. Controlling for 
such factors was beyond the scope of this study, but could, and perhaps should, be 
attempted in a future study. 

Age did not demonstrate an effect, which is most likely due to the fact that the 
primary drivers in the 100-Car Study did not include those age groups with the most 
dramatic risks, e.g., novice teenage drivers and elderly drivers. Future analyses should 
be conducted on driving populations that include these age groups.

The odds ratio of safety belt use was not significantly different from 1.0, thus 
providing no evidence to support that wearing a safety belt is associated with involve-
ment in crashes or near-crashes. The mere act of wearing a safety belt was included 
in the analysis to assess whether this behavior correlated with other behaviors. Safety 
belt use among the drivers in the 100-Car Study was comparable to national averages, 
as the June 2004 National Occupant Protection Use Survey (NOPUS) indicated that 
80% of front-seat passengers use safety belts (Glassbrenner 2004).

 
This research did not directly support the contention by Ludwig and Geller (1997) 

that various risky driving behaviors are inter-related. Although a tremendous quantity of 
data was collected in the 100-Car Study, crashes, and even near-crashes, proved to be 
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too rare to allow for the stable modeling of interactions between specific behaviors in 
crashes and near-crashes. Nonetheless, the data were used to assess which of these 
behaviors actually increase crash risk by conducting a simultaneous analysis of the 
risk of various driving behaviors.

While the 100-Car database could provide precise odds ratios for involvement in 
crashes and near-crashes for nearly all of the driving behaviors and driver states, some 
issues emerged when calculating odds ratios for inappropriate avoidance maneuvers 
and improper passing. These odds ratios were both very high and rather unstable; 
however, the manner in which crashes and near-crashes were identified confounds 
these results. The avoidance or passing maneuver was typically part of the crash and 
near-crash event itself; in other words, in most crashes and all near-crashes an avoid-
ance maneuver takes place. This indicates that an extreme avoidance maneuver is 
not likely to exist outside of a near-crash or crash event, thereby making the odds ratio 
very high.

These data are more detailed than the crash database statistics because they 
compare the driver behaviors occurring just prior to crashes and near-crashes, to 
behaviors during normal baseline driving conditions. While crash databases provide 
information regarding the contributing factors involved in crashes, they cannot be used 
to describe the relative crash risk associated with various behaviors. Crash database 
statistics, for example: indicate speeding is a contributing factor in 30% of all fatal 
crashes (NHTSA 2005c); however, at any given time, 30% of drivers may be exceed-
ing the posted speed limits. Thus, we would expect 30% of fatal car crashes to involve 
speeding as a contributing factor given the base rate of speeding under normal driving 
conditions. Without baseline data, the risk of being involved in a crash while speed-
ing, relative to the risk of crashing when not speeding, cannot be determined. Adding 
baseline data overcomes this deficiency and allows inferences to be made about how 
frequently particular driving behaviors occur in certain events compared to normal or 
baseline driving conditions. Applying this analytical method demonstrates the power of 
naturalistic driving data and its importance in relating driving behavior to involvement 
in crashes and near-crashes.

Nonetheless, the Phase II analyses did support prior epidemiological studies 
(Hendricks, Fell, and Freedman 1999; Treat et al. 1979) and crash database statistics 
(NHTSA 2005a) indicating that various driving behaviors are related to crashes and 



75

near-crashes. The Phase II analyses found that drivers in the 100-Car Study were more 
likely to be involved in a crash or near-crash when speeding, drowsy, driving aggres-
sively, or looking away from the forward roadway for 2 s or longer. 

The hypothesis that risky drivers engage in various risky driving patterns dur-
ing both events and non-events, while safe drivers infrequently engage in potentially 
risky driving behaviors, was partially supported. While no significant differences existed 
between the High- and Low-Risk groups for the Driving Behavior, Willful Behavior, and 
Total Time EOR risk categories, significant differences existed for Drowsiness and 
Safety Belt risk categories. High-risk drivers were more likely than low-risk drivers to 
drive while drowsy or without using safety belts. These results could be applied to traffic 
schools and driver education programs because fatigue management training and safety 
belt use should be important aspects of driver training. Finally, this analysis showed 
the high-risk drivers in the 100-Car Study were involved in crashes, near-crashes, and 
incidents at more than 100 times the per-mile rate of the low-risk drivers; a remarkable 
finding in and of itself. 
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GENERAL CONCLUSIONS

The present report assessed the effect of specific driving behaviors on the 
risk of being involved a crash or near-crash. Additionally, differences in engaging in 
potentially risky behaviors between high- and low-risk drivers (based on the frequency 
of events per mile) were also assessed. 

Applying these analytical methods demonstrates the power of naturalistic driving 
data and its importance in relating driving behavior to crash and near-crash involvement. 
While some may argue that the crashes and near-crashes reported in this study are 
less severe than crashes in crash databases, an important benefit to naturalistic driving 
data collection is collecting non-police-reported crashes, as these are not accessible for 
analyses in any other type of database. While many would argue that we already knew 
many of these behaviors were dangerous; the actual degree of heightened risk of crash 
or near-crash involvement has never before been assessed. The detailed recording 
of driving behavior that occurs seconds prior to crashes and near-crashes yields new 
insights. The most important findings of this study are briefly discussed here.

Four behaviors have odds ratios that show an increased risk of being involved 
in a crash or near-crash and should, therefore, be deemed risky. These behav-
iors are:

– Inappropriate speed

– Driver drowsiness

– Total time EOR > 2 s

– Aggressive driving/willful behavior

•
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Older drivers were found to have a lower risk of being involved in crashes and 
near-crashes than younger drivers. While increasing age was shown to have a 
protective effect, this should be interpreted with some caution, since the popu-
lation of drivers in the 100-Car Study did not include very young and very old 
drivers. If newly licensed drivers, aged 16 and 17, and drivers older than 65 
were included in the analysis, crash statistics would suggest that a somewhat 
different relationship might emerge (NHTSA 2005a).

The hypothesis that drivers with higher rates of involvement in crashes and near-
crashes engage in various potentially risky driving patterns, while drivers with 
low rates of involvement infrequently engage in these behaviors, was partially 
supported. High-risk drivers were more likely than low-risk drivers to drive while 
drowsy or without their safety belts.

These findings resulted from significant effort in hardware and software devel-
opment and installation, data collection, reduction, and analyses. While these types of 
analyses using naturalistic driving databases are incredibly useful, they are also unique 
due to the incredible effort required to collect these types of data. There were many 
challenges and obstacles to overcome in designing the instrumentation, installing the 
instrumentation, and maintaining this equipment for 1 year for 100 vehicles. The large 
amount of data collected also was reduced into more manageable databases by a team 
of trained data reductionists working for over a 12-month period. These analyses, while 
in manageable databases, were not trivial. 

Naturalistic driving studies may be both logistically and financially demanding, 
but are not as resource intensive as high-fidelity, motion platform simulators. Tech-
nological advancements have made this type of large-scale data collection not only 
possible, but economically feasible as well. Large-scale naturalistic driving studies are 
able to assess driving behavior in new ways that are not possible with any other type 
of research method. 

Future Research Directions and Limitations

Data used in the present study were gathered in only one metropolitan area of 
the country; therefore, the odds ratios are more readily generalizable to other metropoli-
tan areas and less so to the United States at large. Future research efforts should be 

•

•
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conducted in different types of areas to get a more complete view of driving behaviors 
across different driving environments. 

In addition, the population of drivers studied here was, by design, biased to-
ward younger drivers (40% of the drivers were under age 28). This produced a sample 
with a higher percentage of younger drivers than is present in the general population. 
While caveats are in place to account for these discrepancies (frequency per vehicle 
miles traveled), future research should be conducted using more representative driver 
samples, including the very young and the very old, which more closely resemble the 
driving population at-large. 

Also, even though 12 to 13 months of continuous data were collected from 109 
drivers, there was still not enough data to perform all the analyses attempted in this 
study. The issue is not that enough data were collected (note that 7 terabytes of data 
were collected). The issue stems from the modeling of rare events. Crashes and near-
crashes are relatively rare events, and when attempting to model combinations of be-
haviors that occurred for these rare events, the data did not support stable estimations 
of such rare combinations. The attempt was made to more broadly define behaviors 
in fewer categories. While this increased statistical power, it may have reduced the 
meaning of these associations. These issues further indicate the need of a larger-scale, 
nationwide naturalistic driving data collection effort to fully understand the impact of 
driving behavior on crash risk. 

Specific driver distractions and general inattention were aggregated in this 
study according to Total Time EOR greater vs. less than 2 s. Klauer, Dingus, Neale, 
Sudweeks, and Ramsey (2006) found that secondary tasks with a total glance time 
> 2 s significantly increase the risk of being involved in a crash or near-crash. Klauer, 
Dingus, Neale, Sudweeks, and Ramsey (2006) also investigated secondary tasks in 
terms of the number of glances or button presses required to complete the task. These 
analyses suggest the tasks requiring more eye glances or button presses were all as-
sociated with increased risk. While investigating individual distraction types would have 
been valuable, only eye-glance duration was used as a measure of distraction for this 
report, because it greatly simplified the modeling procedure without removing driver 
distraction from the analysis. 

The identification of potentially risky driving behaviors using continuous video 
were subjective judgments and sometimes difficult to ascertain. While the inter- and intra-
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rater reliability scores suggested high reliability between the data reductionists, these 
scores were obtained toward the end of the data reduction task (last 3 months). Future 
research should attempt to obtain inter- and intra-rater reliability scores earlier in the 
data reduction process to ensure a high quality of data reduction throughout the process.

Video data reduction also impeded the identification of some risky driving behav-
iors, as some were not observable, such as daydreaming, or difficult to assess without 
more environmental context, such as speeding without knowing the posted speed limit 
of the section of roadway. Future research could greatly enhance current results in this 
area. New technologies, such as portable eye trackers and driver monitoring devices, 
are currently being developed to assist drivers. A method to better assess the impacts 
of some of these behaviors would provide valuable information for transportation safety 
professionals and designers alike.

This study may provide conservative estimates of relative risks because the 
vehicles were sampled based upon how often those vehicles were involved in crashes, 
near-crashes, and incidents. Because the drivers of those particular vehicles may 
have been more likely to engage in particular behaviors, this may have increased the 
frequency of risky behaviors present in the baseline sample. This would cause the 
odds ratio estimates to be somewhat lower than if a different sampling method had 
been used. Other sampling methods could have better matched baseline epochs to 
crashes and near-crashes; however, this was beyond the scope of the current effort. 
Such a study could provide further insight into the impact of specific driving behaviors 
and driver states on individual drivers, and better control for the specific conditions and 
circumstances under which crashes and near-crashes occur.

It should also be noted that the analyses conducted in this study used the 
crash/near-crash as the unit of analysis and not the driver. This may also have slightly 
altered the results of this analysis; however, it is unknown if using the driver as the unit 
of analysis would alter the results. Future analyses may be conducted using the driver 
as the unit of analysis; however, current methods for conducting this type of analysis 
with this type of data are relatively experimental and very complex.

More research is needed to further understand interactions among driving be-
haviors. Rather than assessing unitary behaviors, a future research effort should as-
sess which combinations of driving behaviors increase crash risk. Of course, as stated 
previously, this may require an even larger database. 
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Application of Results

Driving faster than surrounding traffic, driving while drowsy, looking away from 
the forward roadway longer than 2 s, and driving aggressively are directly linked to 
driving performance degradation, as has been shown in previous research and in being 
involved in crashes and near-crashes. Previous research has shown (Dingus, Klauer, 
Neale, Petersen, Lee, Sudweeks et al. 2006) near-crashes to be kinematically similar 
(i.e., involve similar levels of braking and swerving) to crashes. The primary difference 
between crashes and near-crashes is a successful evasive maneuver. While crashes 
lead to property damage, injury, and possibly death, near-crashes have similar proper-
ties. Including both near-crash and crash events in calculating relative risk produces a 
more accurate estimate that can help direct future research. 

Given these risky behaviors, these results can be used to educate the public on 
the dangers of looking away from the forward roadway, driving while drowsy, driving 
faster than surrounding traffic, and aggressive driving. The results also have implications 
for collision avoidance warning systems. A system, for example: that can determine 
whether the driver’s eyes are closed or away from the forward roadway could potentially 
have greater efficiency and accuracy. In general, this research highlights those driving 
behaviors that produce the greatest driving risk, which, if avoided, could greatly reduce 
near-crash and crash events. 
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APPENDIX A: OPERATIONAL DEFINITIONS OF SPECIFIC/
GENERAL DRIVING BEHAVIORS

AVOIDING OBJECT

Avoiding animal—Inappropriate maneuver made to avoid hitting an animal. Example: braking 
or swerving into oncoming traffic.

Avoiding pedestrian—Inappropriate maneuver made to avoid pedestrian, Example: braking 
or swerving into oncoming traffic. 

Avoiding other vehicle—Inappropriate maneuver made to avoid hitting another vehicle. Ex-
ample: braking or swerving into traffic or onto a sidewalk where pedestrians are present.

APPARENT UNFAMILIARITY

Apparent general inexperience driving—Driver’s behaviors demonstrate general inexperience 
driving. Examples include, hyper-focused driving, overly cautious maneuvers, etc.

Apparent unfamiliarity with roadway—Driver’s behavior is consistent with being lost in a 
particular location. Examples: performing repeated U-turns, reading maps/papers, etc.

Apparent unfamiliarity with vehicle—Driver’s behavior demonstrates lack of knowledge of 
vehicle controls. Examples: turning on wipers instead of turn signal, etc.

DRIVER IMPAIRMENT—The driver’s behavior, judgment, or driving ability is altered or 
hindered. Includes drowsiness, anger, use of drugs or alcohol, illness, lack of or incorrect use 
of medication, or disability. See Dingus, Klauer, Neale, Petersen, Lee, Sudweeks et al. (2006) 
for a complete description.

Anger—Any behaviors observed that are highly associated with anger such as facial expres-
sions, vocalizations, or gesturing.

Drug or alcohol use or suspected use—Recorded if drug/alcohol use was observed or was 
suspected based upon time of day, lack of vehicular control, and facial expressions.
 
Drowsiness—Those driving behaviors that include eyelid closures, minimal body/eye move-
ment, repeated yawning, and/or other behaviors based upon those defined by Wierwille & 
Ellsworth (1994). 

Illness—Any driver behavior observed exhibiting behaviors indicating that the driver was not 
feeling well, e.g., blowing nose, profuse coughing, etc.
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FAILURE TO SIGNAL

Failure to signal with other violations or unsafe actions—Examples, failing to signal during 
a lane change that was illegally executed in the middle of an intersection.

Failure to signal, without other violations or unsafe actions—Examples, changing lanes 
without signaling or turning without signaling. 

IMPROPER BACKING

Improper backing, did not see—Subject driver did not check mirrors or area behind vehicle 
when backing. 

Improper backing, other—Example: backing into traffic.

IMPROPER BRAKING

Sudden or improper braking on roadway—The subject brakes suddenly, or in an improper 
manner that could put the subject or other vehicles at risk (late braking, hard braking). 

Sudden or improper stopping on roadway—The subject stops suddenly, or in an improper 
manner that could put the subject or other vehicles at risk (hard or late braking when coming 
to a stop, or stopping on roadway putting self and others at risk). 

IMPROPER PARKING

Improper start from a parked position—Subject driver did not check mirrors or windows 
while exiting the parking spot.

Parking in improper or dangerous location—Parking in an undesignated area put self and 
others at risk. Example: parking on shoulder of interstate.

IMPROPER PASSING

Illegal passing—Example: crossing double solid yellow line or passing on the shoulder. 

Passing on the right—The subject driver intentionally moves to the right lane to pass a vehicle. 

Other improper or unsafe passing—Example: passing on a two-lane road with limited sight 
distance or with other vehicle present.

IMPROPER TURN

Making turn from wrong lane—Example: subject driver turns across lanes or turns from a 
non-turning lane. 
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Improper turn, cut corner on left turn—Example: the subject driver makes a left turn and 
cuts into the adjacent lane to the left or into oncoming traffic. 

Improper turn, wide right turn—Example: subject driver makes a right turn wide and cuts into 
left lane or into the oncoming traffic lane. 

Other improper turning—Example: turning from a non-turn lane.

INAPPROPRIATE SPEED

Exceeds speed limit—Speed limit is estimated by video analysts based upon locality and 
speed of surrounding traffic; the driver must exceed this speed limit by 10 mph or more. 

Exceeds safe speed but not speed limit—Driver exceeds safe speed for current driving 
conditions (weather, traffic situation) that call for slower speeds.

Speeding or other unsafe actions in work zone—Speeding or any other action in a work 
zone that could put the driver or others at risk.

Driving slowly below speed limit—Speed limit is estimated by video analysts based upon local-
ity and speed of surrounding traffic; the driver is traveling 10 mph below the estimated speed limit.

Driving slowly in relation to other traffic but not below speed limit—Example: the driver 
is on the interstate driving the speed limit and being passed by most traffic. 

PROXIMITY

Cutting in too closely in front of other vehicle—Subject driver changes lanes or turns into 
the lane too close in front of other vehicle. 

Cutting in too closely behind other vehicle—Subject driver changes lanes or turns into the 
lane too close behind other vehicle.

Following too closely—This was determined by video analysts, using speed, distance from 
the radar, and dash marks in the road. If the estimated distance was consistently less than 2 s 
from the lead vehicle, following too closely was marked.

TOTAL TIME EYES OFF FORWARD ROADWAY—Operationally defined as the sum 
total of all eye glances away from the forward roadway. This could potentially be one glance or 
multiple glances away from the forward roadway within a given time period.

TRAFFIC CONTROL DEVICE VIOLATION

Disregarded officer or watchman—Subject driver was unaware of watchman or was too late 
to react. 
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Signal violation, apparently did not see signal—Subject driver was unaware of signal or 
was too late to react. 

Signal violation, intentionally ran a red light—Subject driver ran a red light and was purpose-
ful (e.g., Driver purposefully accelerated through intersection).

Signal violation, tried to beat signal change—Subject ran a red light trying to pass through 
the intersection while the light was yellow. 

Stop-sign violation, apparently did not see stop sign—Subject driver was unaware of stop 
sign or was too late to react. 

Stop-sign violation, intentionally ran stop sign at speed—Subject purposefully ran the stop 
sign without decelerating below a speed of 15 mph. 

Stop-sign violation, “rolling stop”—the subject slowed to a speed less than 15 mph for the 
stop sign but did not come to a complete stop. 

Other sign violation, apparently did not see sign—Example: did not see yield sign.

Other sign violation, intentional disregard—Purposefully disregard sign. 

Other sign violation—Any other sign violation not accounted for by the other sign violation 
categories.

Non-signed crossing violation—Example: driveway entering road.

Right-of-way error, decision failure—Subject misjudged the situation. Example: subject turns 
into traffic and misjudges the gap. 

Right-of-way error, recognition failure—Subject inadvertently did not recognize the right of way. 

Right-of-way error, unknown cause—Subject did not recognize who had right of way, caused 
by an unknown factor. 

VISUAL

Did not see other vehicle during lane change or merge—The subject driver did not see other 
vehicle while changing lanes or merging. This does not have to be a complete lane change. The 
subject could start to change lanes, then noticed a vehicle in the other lane, and jerked back. 

Driving in other vehicle’s blind zone—The subject driver is continuously driving in another 
driver’s blind zone. 
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WILLFUL BEHAVIOR—Driver behavior that is intentional including the following:

Aggressive driving, specific, menacing actions—Intentional, aggressive actions directed 
toward another vehicle or pedestrian. 

Aggressive driving, other—This includes reckless driving without menacing actions. Examples; 
excessive speed, weaving in and out of traffic, tailgating, etc.

Failed to signal or improper signal—Subject driver did not use turn signal in accordance 
with traffic laws (changing lanes or turning with no signal; or signaling late, after lane change, 
or after turn has already begun). 
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